ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:104.49KB ,
资源ID:524932      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-524932-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材2021-2022学年高中数学人教B版选择性第一册训练:第二章 平面解析几何 测评(二) WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新教材2021-2022学年高中数学人教B版选择性第一册训练:第二章 平面解析几何 测评(二) WORD版含解析.docx

1、过关综合测评第二章测评(二)(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l过点(2,-1),且在y轴上的截距为3,则直线l的方程为()A.2x+y+3=0B.2x+y-3=0C.x-2y-4=0D.x-2y+6=0答案B解析由题意直线过(2,-1),(0,3),故直线的斜率k=3+10-2=-2,故直线的方程为y=-2x+3,即2x+y-3=0.2.(2020山东德州期末)已知直线l1:xcos2+3y+2=0,若l1l2,则l2倾斜角的取值范围是()A.3,2B.0,6C.3,2D.3,56

2、答案C解析因为l1:xcos2+3y+2=0的斜率k1=-cos23-33,0,当cos=0,即k1=0时,直线l2的斜率k不存在,此时倾斜角为2;当k10时,可知直线l2的斜率k=-1k1,此时k3,此时倾斜角的取值范围为3,2.综上可得,l2倾斜角的取值范围为3,2.3.当点P(3,2)到直线mx-y+1-2m=0的距离最大时,实数m的值为()A.2B.0C.-1D.1答案C解析直线mx-y+1-2m=0过定点Q(2,1),所以当点P(3,2)到直线mx-y+1-2m=0的距离最大时,PQ垂直于直线mx-y+1-2m=0,即m2-13-2=-1,所以m=-1,故选C.4.已知圆C1的标准方

3、程是(x-4)2+(y-4)2=25,圆C2:x2+y2-4x+my+3=0关于直线x+3y+1=0对称,则圆C1与圆C2的位置关系为()A.相离B.相切C.相交D.内含答案C解析根据题意,圆C2:x2+y2-4x+my+3=0,其圆心为C22,-m2,若圆C2关于直线x+3y+1=0对称,即点C2在直线x+3y+1=0上,则有2+3-m2+1=0,解得m=23,即圆C2的方程为(x-2)2+(y+3)2=4,其圆心为C2(2,-3),半径r=2.此时,圆心距|C1C2|=(4-2)2+(4+3)2=23+83,则有5-2|C1C2|8,最近距离为82-8.6.若直线ax+by+2=0(a0,

4、b0)截得圆(x+2)2+(y+1)2=1的弦长为2,则1a+2b的最小值为()A.4B.6C.8D.10答案A解析由题意圆心坐标为(-2,-1),半径r=1,所以圆心到直线的距离为d=|-2a-b+2|a2+b2,所以弦长2=21-|-2a-b+2|a2+b22,整理可得2a+b=2,a0,b0,所以1a+2b=1a+2b12(2a+b)=122+2+ba+4ab124+2ba4ab=4,当且仅当2a=b=1时,等号成立.所以1a+2b的最小值为4.7.过原点O作直线l:(2m+n)x+(m-n)y-2m+2n=0的垂线,垂足为P,则点P到直线x-y+3=0的距离的最大值为()A.2+1B.

5、2+2C.22+1D.22+2答案A解析(2m+n)x+(m-n)y-2m+2n=0整理得(2x+y-2)m+(x-y+2)n=0,由2x+y-2=0,x-y+2=0,解得x=0,y=2,所以直线l过定点Q(0,2).因为OPl,所以点P的轨迹是以OQ为直径的圆,圆心为(0,1),半径为1.因为圆心(0,1)到直线x-y+3=0的距离为d=22=2,所以点P到直线x-y+3=0的距离的最大值为2+1.8.在平面直角坐标系中,设A(-0.98,0.56),B(1.02,2.56),点M在单位圆上,则使得MAB为直角三角形的点M的个数是()A.1B.2C.3D.4答案D解析根据题意,作出图形,如图

6、.若MAB为直角三角形,分3种情况讨论:MAB=90,则点M在过点A与AB垂直的直线上,设该直线为l1,又由A(-0.98,0.56),B(1.02,2.56),则直线AB的斜率kAB=2.56-0.561.02-(-0.98)=1,则l1的斜率k1=-1,直线l1的方程为y-0.56=-(x+0.98),即x+y+0.42=0,此时原点O到直线l1的距离d=|0.42|2=0.2121,直线l2与单位圆相离,没有公共点,即没有符合题意的点M;AMB=90,此时点M在以AB为直径的圆上,又由A(-0.98,0.56),B(1.02,2.56),设AB的中点为C,则C的坐标为(0.02,1.56

7、),|AB|=4+4=22,则以AB为直径的圆的圆心C为(0.02,1.56),半径r=12|AB|=2,此时|OC|=(0.02)2+(1.56)2,则有2-1|OC|4,故直线上不存在点到M距离等于4,不是“切割型直线”;B.因为d=24,故直线上不存在点到M距离等于4,不是“切割型直线”.10.已知ab0,点M(a,b)为圆x2+y2=r2内一点,直线m是以点M为中点的弦所在直线,直线l的方程为ax+by=r2,则下列结论正确的是()A.mlB.lmC.l与圆相交D.l与圆相离答案AD解析kMO=ba,直线m的方程为y-b=-ab(x-a),即ax+by-a2-b2=0,M在圆内,a2+

8、b2r,l与圆相离.11.若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为()A.4B.6C.32+1D.8答案ABC解析直线y=kx-1恒过定点A(0,-1)点,当直线与AC垂直时,点P到直线y=kx-1的距离最大,等于AC+r.圆心坐标为(-3,3),所以最大值为(-3)2+(3+1)2+1=6.当直线与圆有交点时距离最小为0.所以点P到直线y=kx-1距离的取值范围为0,6.12.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r0)交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)

9、+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2b答案ABC解析由题意,由圆C2的方程可化为C2:x2+y2-2ax-2by+a2+b2-r2=0两圆的方程相减可得直线AB的方程为:2ax+2by-a2-b2=0,即2ax+2by=a2+b2,分别把A(x1,y1),B(x2,y2)两点代入可得:2ax1+2by1=a2+b2,2ax2+2by2=a2+b2两式相减可得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,所以选项A、B正确;由圆的性质可得,线段AB与线段C1C2互相平分,所以x1+x2=a,y1+y2

10、=b,所以选项C正确,选项D不正确.三、填空题:本题共4小题,每小题5分,共20分.13.经过点P(1,4),且在两坐标轴上的截距互为相反数的直线方程是.答案4x-y=0或x-y+3=0解析根据题意,分2种情况讨论:直线经过原点,则直线l的方程为y=4x,即4x-y=0;直线不经过原点,设直线方程为x-y=a,把点P(1,4)代入可得1-4=a,解得a=-3,即直线的方程为x-y+3=0.综上可得,直线的方程为4x-y=0或x-y+3=0.14.已知向量OA=(k,12),OB=(4,5),OC=(10,k),且A,B,C三点共线,当k0时,若k为直线的斜率,则过点(2,-1)的直线方程为.答

11、案2x+y-3=0解析由题意可得AB=(4-k,-7),BC=(6,k-5),由于AB和BC共线,故有(4-k)(k-5)+42=0,解得k=11或k=-2.k0,k为直线的斜率,过点(2,-1)的直线方程为y+1=-2(x-2),即2x+y-3=0.15.已知直线l:mx+(1-m)y-1=0(mR)与圆O:x2+y2=8交于A,B两点,C,D分别为OA,AB的中点,则|AB|CD|的最小值为.答案43解析直线l的方程可化为m(x-y)+y-1=0,由x-y=0,y-1=0,得x=y=1,即直线l恒过定点P(1,1).C,D分别为OA,AB的中点,|CD|=12|OB|=2.当OPAB时,|

12、AB|最小,此时|AB|=2(22)2-(2)2=26.|AB|CD|=2|AB|226=43.16.设点A(-2,3),B(3,2),若直线ax+y+2=0与线段AB没有交点,则a的取值范围是.答案-43,52解析如图,直线ax+y+2=0恒过点C(0,-2),kAC=-52,kBC=43,故-52-a43,即-43a52.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)求满足下列条件的直线的方程.(1)直线过点(-1,2),且与直线x+y-2=0平行;(2)直线过(0,1)点且与直线3x+y+1=0垂直.解(1)设所求直线的方程为x+y+m=0,

13、点(-1,2)在直线上,-1+2+m=0,m=-1.故所求直线的方程为x+y-1=0.(2)设所求直线的方程为x-3y+m=0.点(0,1)在直线x-3y+m=0上,0-3+m=0,解得m=3.故所求直线的方程为x-3y+3=0.18.(12分)(2021北京海淀模拟)已知直线l1:mx-2(m+1)y+2=0,l2:x-2y+3=0,l3:x-y+1=0是三条不同的直线,其中mR.(1)求证:直线l1恒过定点,并求出该点的坐标;(2)若以l2,l3的交点为圆心,23为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.(1)证明l1:mx-2(m+1)y+2=0可化为m(x-2y)-(

14、2y-2)=0,由x-2y=0,2y-2=0,得x=2,y=1,直线l1恒过定点D(2,1).(2)解l2:x-2y+3=0,l3:x-y+1=0联立可得交点坐标C(1,2),求|AB|最小值即求圆心到直线l1的距离的最大值,此时CD直线l1.|CD|=(2-1)2+(1-2)2=2,|AB|的最小值为212-2=210.19.(12分)如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程.解(1)由于圆A与直线l1:x+

15、2y+7=0相切,R=|-1+4+7|5=25,圆A的方程为(x+1)2+(y-2)2=20.(2)当直线l与x轴垂直时,易知x=-2与题意相符,使|MN|=219.当直线l与x轴不垂直时,设直线l的方程为y=k(x+2),即kx-y+2k=0,连接AQ,则AQMN,|MN|=219,|AQ|=1,由|AQ|=|-k-2+2k|k2+1=1,得k=34.直线l:3x-4y+6=0,故直线l的方程为x=-2或3x-4y+6=0.20.(12分)已知圆C1:x2+y2=1与圆C2:x2+y2-6x+m=0.(1)若圆C1与圆C2外切,求实数m的值;(2)在(1)的条件下,若直线l与圆C2的相交弦长

16、为23且过点(2,1),求直线l的方程.解(1)圆C1:x2+y2=1,则C1(0,0),半径r1=1,由圆C2:x2+y2-6x+m=0,得(x-3)2+y2=9-m,则C2(3,0),半径r2=9-m(m9).圆C1与圆C2外切,|C1C2|=r1+r2,3=1+9-m,解得m=5.(2)由(1)得m=5,圆C2的方程为(x-3)2+y2=4,则C2(3,0),r2=2.由题意可得圆心C2到直线l的距离d=1,当直线l斜率不存在时,直线方程为x=2,符合题意;当直线l斜率为k时,则直线方程为y-1=k(x-2),化为一般形式为kx-y-2k+1=0,则圆心(3,0)到直线l的距离d=|k+

17、1|k2+1=1,解得k=0,得直线方程为y=1.综上,直线l的方程为x-2=0或y-1=0.21.(12分)(2020福建厦门模拟)已知圆C:x2+y2-8y=0与动直线l:y=kx-2k+2交于A,B两点,l恒过定点P,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及POM的面积.解(1)直线l:y=kx-2k+2过定点P(2,2),圆C:x2+y2-8y=0可化为x2+(y-4)2=16,圆心C(0,4).设动点M(x,y),M为AB中点,CMAB,CMMP=0.又CM=(x,y-4),MP=(2-x,2-y),CMMP=x(2-x)+(

18、y-4)(2-y)=0,化简得x2+y2-2x-6y+8=0,即(x-1)2+(y-3)2=2,点M的轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)得M的轨迹为圆,圆心为D(1,3),半径为2,P(2,2),如图,点P(2,2),M均在圆上,|OP|=|OM|,由圆的性质可知ODPM.又直线OD的斜率kOD=3,直线l的斜率kl=-1kOD=-13,直线l的方程为y-2=-13(x-2),即x+3y-8=0,O(0,0)到直线l的距离为d=|0+0-8|10=4105.又|PM|=222-41052=4105,SPOM=12|PM|d=1241054105=165,综上,l的方程为x

19、+3y-8=0,POM的面积为165.22.(12分)已知圆心为C的圆过点(3,3),且与直线y=2相切于点(0,2).(1)求圆C的方程;(2)已知点M(-3,4),且对于圆C上任一点P,线段MC上存在异于点M的一点N,使得|PM|=|PN|(为常数),试判断使OPN的面积等于4的点P有几个,并说明理由.解(1)依题意可设圆心C坐标为(0,t),则半径为|t-2|,圆C的方程可写成x2+(y-t)2=(t-2)2.圆C过点(3,3),(3)2+(3-t)2=(t-2)2,t=4,则圆C的方程为x2+(y-4)2=4.(2)由题知,直线MC的方程为y=4,设N(b,4)(b-3),P(x,y)

20、,则|PM|2=2|PN|2,(x+3)2+(y-4)2=2(x-b)2+2(y-4)2,则(6+2b2)x-(2b2+42-13)=0,上式对任意x-2,2恒成立,6+2b2=0,且2b2+42-13=0,解得=32或=1(舍去,与M重合),b=-43,点N-43,4,则|ON|=4103,kON=-3,直线ON方程为3x+y=0,点C到直线ON的距离d=410=2105.若存在点P使OPN的面积等于4,则SOPN=124103d=4,d=3105.当点P在直线ON的上方时,点P到直线ON的距离的取值范围为0,2105+2,31052-2105,当点P在直线ON的下方时,使OPN的面积等于4的点有0个.综上可知,使OPN的面积等于4的点P有2个.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3