1、课时分层作业(十三)导数的概念及其几何意义(建议用时:40分钟)一、选择题1设f (x0)0,则曲线yf (x)在点(x0,f (x0)处的切线()A不存在B与x轴平行或重合C与x轴垂直D与x轴相交但不垂直B由导数的几何意义可知选项B正确2已知函数f (x)在xx0处可导,若 1,则f (x0)()A2 B1CD0C 1 ,即f (x0) .故选C.3已知点P(1,1)为曲线上的一点,PQ为曲线的割线,当x0时,若kPQ的极限为2,则在点P处的切线方程为()Ay2x1By2x1Cy2x3Dy2x2B由题意可知, 曲线在点P处的切线方程为y12(x1),即2xy10.4已知曲线yx3在点P处的切
2、线的斜率k3,则点P的坐标是()A(1,1)B(1,1)C(1,1)或(1,1)D(2,8)或(2,8)C因为yx3,所以y 3x23xx(x)23x2.由题意,知切线斜率k3,令3x23,得x1或x1.当x1时,y1;当x1时,y1.故点P的坐标是(1,1)或(1,1),故选C.5如图,函数yf (x)的图象在点P(2,y)处的切线是l,则f (2)f (2)等于()A4B3C2D1D直线l的方程为1,即xy40.又由题意可知f (2)2,f (2)1,f (2)f (2)211.二、填空题6已知函数yax2b在点(1,3)处的切线斜率为2,则_.2f (1)2,又 (ax2a)2a,2a2
3、,a1.又f (1)ab3,b2.2.7(一题两空)已知f (x)mx2n,且f (1)1,f (x)的导函数f (x)4x,则m_,n_.23mx2mx,故f (x) (mx2mx)2mx4x.所以m2.又f (1)1,即2n1,所以n3,故m2,n3.8若曲线yx22x在点P处的切线垂直于直线x2y0,则点P的坐标是_(0,0)设P(x0,y0),则y|xx0 (2x02x)2x02.因为点P处的切线垂直于直线x2y0,所以点P处的切线的斜率为2,所以2x022,解得x00,即点P的坐标是(0,0)三、解答题9若曲线yf (x)x3在点(a,a3)(a0)处的切线与x轴、直线xa所围成的三
4、角形的面积为,求a的值解f (a) 3a2,曲线在(a,a3)处的切线方程为ya33a2(xa),切线与x轴的交点为.三角形的面积为|a3|,得a1.10在曲线yx2上取一点,使得在该点处的切线:(1)平行于直线y4x5;(2)垂直于直线2x6y50;(3)倾斜角为135.分别求出满足上述条件的点的坐标解设yf (x),则f (x) (2xx)2x.设P(x0,y0)是满足条件的点(1)因为点P处的切线与直线y4x5平行,所以2x04,解得x02,所以y04,即P(2,4)(2)因为点P处的切线与直线2x6y50垂直,且直线2x6y50的斜率为,所以2x01,解得x0,所以y0,即P.(3)因
5、为点P处的切线的倾斜角为135,所以切线的斜率为tan 1351,即2x01,解得x0,所以y0,即P.11(多选题)过点(2,0)作曲线f (x)x3的切线l,则直线l的方程可能为()Ay0Bx0C12xy240D27xy540ADf (x)x3,设切点(x0,x)则k 3x3x0(x)(x)23x,在xx0处的切线方程为yx3x(xx0),把点(2,0)代入并解得x00或x03.当x00时,切线方程为y0;当x03时,切点为(3,27),斜率k27,故切线方程为y2727(x3),整理为27xy540.故选AD12已知函数f (x)的图象如图所示,f (x)是f (x)的导函数,则下列数值
6、排序正确的是()A0f (2)f (3)f (3)f (2)B0f (3)f (3)f (2)f (2)C0f (3)f (2)f (3)f (2)D0f (3)f (2)f (3)f (3)记A(2,f (2),B(3,f (3),作直线AB,则直线AB的斜率kf (3)f (2),由函数图象,可知k1kk20,即f (2)f (3)f (2)f (3)0.故选B.13(一题两空)已知曲线yf (x),yg(x),它们的交点坐标为_,过两曲线的交点作两条曲线的切线,则曲线f (x)在交点处的切线方程为_(1,1)x2y10由得两曲线的交点坐标为(1,1)由f (x),得f (x) ,yf (
7、x)在点(1,1)处的切线方程为y1(x1),即x2y10.14已知二次函数f (x)ax2bxc的导数为f (x),f (0)0,对于任意实数x,有f (x)0,则的最小值为_2由导数的定义,得f (0) (axb)b.因为对于任意实数x,有f (x)0,则所以ac,所以c0,所以2.15设函数f (x)x3ax29x1(a0),若曲线yf (x)的斜率最小的切线与直线12xy6平行,求a的值解yf (xx)f (x)(xx)3a(xx)29(xx)1(x3ax29x1)(3x22ax9)x(3xa)(x)2(x)3,3x22ax9(3xa)x(x)2,f (x) 3x22ax9399.由题意知f (x)的最小值是12,912,即a29,a0,a3.