ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:946KB ,
资源ID:523925      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-523925-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(内蒙古自治区乌兰察布市集宁一中2019-2020学年高二上学期10月月考数学试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

内蒙古自治区乌兰察布市集宁一中2019-2020学年高二上学期10月月考数学试题 WORD版含解析.doc

1、集宁一中2019-2020学年第一学期第一次月考高二年级数学试题第卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知等差数列前9项的和为27,则A. 100B. 99C. 98D. 97【答案】C【解析】试题分析:由已知,所以故选C.【考点】等差数列及其运算【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.

2、2.设是等差数列的前项和,若,则A. B. C. D. 【答案】A【解析】,选A.【此处有视频,请去附件查看】3.设等比数列的前项和为,若,则( )A. 31B. 32C. 63D. 64【答案】C【解析】【分析】根据等比数列前项和的性质,得到,成等比数列,进而可求出结果.【详解】因为为等比数列的前项和,所以,成等比数列,所以,即,解得.故选C【点睛】本题主要考查等比数列前项和的计算,熟记前项和的性质即可,属于常考题型.4.等差数列的公差是2,若成等比数列,则的前项和( )A. B. C. D. 【答案】A【解析】试题分析:由已知得,又因为是公差为2的等差数列,故,解得,所以,故【考点】1、等

3、差数列通项公式;2、等比中项;3、等差数列前n项和【此处有视频,请去附件查看】5.已知等比数列满足,则( )A. B. C. D. 【答案】B【解析】由a1+a3+a5=21得 a3+a5+a7=,选B.【此处有视频,请去附件查看】6.已知为等比数列,则( )A. B. C. D. 【答案】D【解析】【分析】由条件可得的值,进而由和可得解.【详解】或.由等比数列性质可知或故选D.【此处有视频,请去附件查看】【点睛】本题主要考查了等比数列的下标的性质,属于中档题.7.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为( )A. B. C. D. 【答案】B【解析】得到的偶

4、函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.8.设等差数列的前n项和为,若,则()A. 3B. 4C. 5D. 6【答案】C【解析】【分析】由又,可得公差,从而可得结果.【详解】是等差数列又,公差,故选C【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.9.在ABC中,N是AC边上一点,且,P是BN上的一点,若m,则实数m的值为()A. B. C. 1D. 3【答案】B【解析】【分析】根据向量的线性表示逐步代换掉不需要的向量求解.【详

5、解】设 , 所以 所以 故选B.【点睛】本题考查向量的线性运算,属于基础题.10.已知等差数列的前项和为,且,数列满足,则数列的前9项和为 ( )A. 20B. 80C. 166D. 180【答案】D【解析】等差数列an的前n项和为Sn,且S2=4,S4=16,可得,解得d=2,a1=1,an=2n=1,bn=an+an+1=4n.数列bn的前9和.本题选择D选项.11.已知函数,若关于的方程在区间上有且只有四个不相等的实数根,则正数的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】先将函数化简整理,得到,根据关于的方程在区间上有且只有四个不相等的实数根,确定能取的值,再由题

6、意列出不等式,即可求出结果.【详解】因为,所以由得,因为,所以,又关于的方程在区间上有且只有四个不相等的实数根,所以应取,因此,解得.故选C【点睛】本题主要考查由函数零点个数求参数的问题,熟记三角函数的图像和性质即可,属于常考题型.12.设等差数列的前n项和为,且满足,则中最大项为( )A. B. C. D. 【答案】B【解析】试题分析:是单调递减数列,时,时,所以最大考点:1等差数列性质;2等差数列求和公式第卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.)13.设是首项为,公差为的等差数列,为其前项和若成等比数列,则的值为_【答案】【解

7、析】试题分析:依题意得,解得考点:1等差数列、等比数列的通项公式;2等比数列的前项和公式【此处有视频,请去附件查看】14.已知为锐角三角形的两个内角,则与的大小关系是_【答案】【解析】【分析】由题意利用锐角三角形的性质、诱导公式和三角函数的单调性比较与的大小关系即可.【详解】因为是锐角三角形的两个内角,故,所以.即.【点睛】本题主要考查诱导公式的应用,锐角三角形的性质等知识,意在考查学生的转化能力和计算求解能力.15.设是数列的前项和,且,则_【答案】【解析】原式为,整理为: ,即,即数列是以-1为首项,-1为公差的等差的数列,所以 ,即 .【点睛】这类型题使用的公式是 ,一般条件是 ,若是消

8、 ,就需当 时构造 ,两式相减 ,再变形求解;若是消 ,就需在原式将 变形为: ,再利用递推求解通项公式.【此处有视频,请去附件查看】16.设等比数列满足a1+a3=10,a2+a4=5,则a1a2an的最大值为 【答案】【解析】试题分析:设等比数列的公比为,由得,解得.所以,于是当或时,取得最大值.考点:等比数列及其应用三、解答题(本大题共6个小题.共70分.解答应写出文字说明,证明过程或演算步骤.)17.设等差数列满足,()求的通项公式;()求的前项和及使得最大的序号的值【答案】an=11-2n,n=5时,Sn取得最大值【解析】试题分析:解:(1)由an=a1+(n-1)d及a3=5,a1

9、0=-9得,a1+9d=-9,a1+2d=5,解得d=-2,a1=9,,数列an的通项公式为an=11-2n,(2)由(1)知Sn=na1+d=10n-n2因为Sn=-(n-5)2+25所以n=5时,Sn取得最大值考点:等差数列点评:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性18.数列满足,(I)设,证明是等差数列;(II)求的通项公式【答案】(I)证明见解析;(II).【解析】试题分析:(1)由an22an1an2,得an2an1an1an2,即可证得;(2)由(1)得bn12(n1)2n1,即an1an2n1,进而利用

10、累加求通项公式即可.试题解析:(1)证明由an22an1an2,得an2an1an1an2,即bn1bn2.又b1a2a11,所以bn是首项为1,公差为2的等差数列(2)解由(1)得bn12(n1)2n1,即an1an2n1.于是(ak1ak)(2k1),所以an1a1n2,即an1n2a1.又a11,所以ann22n2,经检验,此式对n=1亦成立,所以,an的通项公式为ann22n2.点睛:本题主要考查等比数列的定义以及已知数列的递推公式求通项.由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数数列);(2)累加法,相邻两项的差成等求和的数列可利

11、用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法,形如的递推数列求通项往往用构造法,即将利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.19.已知函数.(1)求的最小正周期;(2)当时,若,求的值.【答案】(1);(2)或.【解析】【分析】(1)先将函数解析式化简整理,得到,即可求出最小正周期;(2)先由,得到,再由,即可确定结果.【详解】(1)所以最小正周期(3)因为,所以,又因为,即,所以或,则或.【点睛】本题主要考查求三角函数最小正周期,以及由三角函数值求角的问题,熟记三角函数的图像和性质即可,属于常考题型.20.等

12、比数列的各项均为正数,且.(1)求数列通项公式;(2)设 ,求数列的前项和.【答案】(1) (2) 【解析】试题分析:()设出等比数列的公比q,由,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;()把()求出数列an的通项公式代入设bnlog3a1log3a2log3an,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到

13、数列的前n项和试题解析:()设数列an的公比为q,由9a2a6得9,所以q2由条件可知q0,故q由2a13a21得2a13a1q1,所以a1故数列an的通项公式为an()bnlog3a1log3a2log3an(12n)故所以数列的前n项和为考点:等比数列的通项公式;数列的求和【此处有视频,请去附件查看】21.已知是各项均为正数等比数列,是等差数列,且,.(1)求和的通项公式;(2)设,求数列的前项和.【答案】(),;()【解析】试题分析:()设出数列的公比和数列的公差,由题意列出关于的方程组,求解方程组得到的值,则等差数列和等比数列的通项公式可求;()由题意得,然后利用错位相减法注得数列的前

14、项和试题解析:()设的公比为q,的公差为d,由题意,由已知,有消去d得解得,所以的通项公式为,的通项公式为()由()有,设的前n项和为,则两式相减得所以考点:等差数列与等比数列的综合【易错点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于和不等于两种情况求解【此处有视频,请去附件查看】22.设数列的前项和.已知=4,=2+1,.()求通项公式;()求数列|的前项和.【答案】(1);(2).【解析】试题分析:本题主要考查等差、等比数列的基础知识,同时考查数列基本思想方法,以及推理论证能力.试题解析:()由题意得,则又当时,由,得.所以,数列的通项公式为.()设,.当时,由于,故.设数列的前项和为,则.当时,所以,【考点】等差、等比数列的基础知识.【方法点睛】数列求和的常用方法:(1)错位相减法:形如数列的求和,其中是等差数列,是等比数列;(2)裂项法:形如数列或的求和,其中,是关于的一次函数;(3)分组法:数列的通项公式可分解为几个容易求和的部分【此处有视频,请去附件查看】

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3