ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:267.50KB ,
资源ID:523362      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-523362-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年新教材高中数学 第六章 计数原理 五 组合数的综合应用课时素养评价(含解析)新人教A版选择性必修第三册.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年新教材高中数学 第六章 计数原理 五 组合数的综合应用课时素养评价(含解析)新人教A版选择性必修第三册.doc

1、五组合数的综合应用(25分钟50分)一、选择题(每小题5分,共20分)1.要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为()A.6B.12C.24D.36【解析】选B.甲和另一个人一起分到A班有=6种分法,甲一个人分到A班的方法有:=6种分法,共有12种分法.【发散拓】解答排列、组合应用题要从“分析”“分辨”“分类”“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“对象”,哪些是“位置”.(2)“分辨”就是辨别是排列还是组合,对某些对象的位置有、无限制等.(3)“分类”就是将较复杂的应用题中的对象分成互相排斥的几类,然

2、后逐类解决.(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.2.某密码锁共设四个数位,每个数位的数字都可以是1,2,3,4中的任一个.现密码破译者得知:甲所设的四个数字有且仅有三个相同;乙所设的四个数字有两个相同,另两个也相同;丙所设的四个数字有且仅有两个相同;丁所设的四个数字互不相同.则上述四人所设密码最安全的是()A.甲B.乙C.丙D.丁【解析】选C.甲共有=48种不同设法,乙共有=36,丙共有=144,丁共有=24,所以丙最安全. 3.设集合A=(x1,x2,x3,x4,x5)|xi-1,0,1,i=1,2,3,4,5,那么集合A中满足条件

3、“1|x1|+|x2|+|x3|+|x4|+|x5|3”的元素个数为()A.60B.90C.120D.130【解题指南】题设条件1|x1|+|x2|+|x3|+|x4|+|x5|3意味着x1,x2,x3,x4,x5有4个,3个,2个元素为0.【解析】选D.集合A中元素为有序数组(x1,x2,x3,x4,x5),题中要求有序数组的5个数中仅1个数为1、仅2个数为1或仅3个数为1,所以共有2+22+222=130个不同数组.4.在同一个袋子中含有不同标号的红、黑两种颜色的小球共有8粒,从红球中选取2粒,从黑球中选取1粒,共有30种不同的选法,其中黑球至多有()A.2粒B.4粒C.3粒D.5粒【解析

4、】选C.设黑球有x粒,则红球有(8-x)粒,则=30,由于0xq时有ipiq,则称ip和iq是该数组的一个“好序”,一个数组中“好序”的个数称为此数组的“好序数”,例如,数组(1,3,4,2)中有好序“1,3”,“1,4”,“1,2”,“3,4”,其“好序数”等于4.若各数互不相等的正整数组(a1,a2,a3,a4,a5,a6)的“好序数”等于2,求(a6,a5,a4,a3,a2,a1)的“好序数”.【解题指南】对应于含有n个数字的数组中,首先做出任取两个数字时可以组成的数对,减去逆序的个数,得到结果.【解析】因为各数互不相等的正整数组(a1,a2,a3,a4,a5,a6)的“好序数”等于2,

5、(a6,a5,a4,a3,a2,a1)中任取两个的组合有=15个,所以(a6,a5,a4,a3,a2,a1)的“好序数”是15-2=13.8.有8名男生和5名女生,从中任选6人.(1)有多少种不同的选法?(2)其中有3名女生,有多少种不同的选法?(3)其中至多有3名女生,有多少种不同的选法?(4)其中有2名女生,4名男生,分别负责6种不同的工作,共有多少种不同的分工方法?(5)其中既有男生又有女生,有多少种不同的选法?【解析】(1)适合题意的选法有=1 716种.(2)第1步,选出女生,有种;第2步,选出男生,有种.由分步乘法计数原理知,适合题意的选法有=560种.(3)至多有3名女生包括:没

6、有女生,1名女生,2名女生,3名女生四类情况.第1类没有女生,有种;第2类1名女生,有种;第3类2名女生,有种;第4类3名女生,有种.由分类加法计数原理知,适合题意的选法共有+=1 568种.(4)第1步,选出适合题意的6人,有种;第2步,给这6人安排6种不同的工作,有种.由分步乘法计数原理知,适合题意的分工方法共有=504 000种.(5)用间接法,排除掉全是男生的情况和全是女生的情况即是符合题意的选法.而由题意知不可能6人全是女生,所以只需排除全是男生的情况,所以有-=1 716-28=1 688种选法.(15分钟30分)1.(5分)在200件产品中有3件次品,现从中任意抽取5件,其中至少

7、有2件次品的抽法有()A.种B.种C.种D.种【解析】选D.根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有种,“有3件次品”的抽取方法有种,则共有+种不同的抽取方法,故选D.【加练固】用黄、蓝、白三种颜色粉刷6间办公室,一种颜色粉刷3间,一种颜色粉刷2间,一种颜色粉刷1间,则粉刷这6间办公室,不同的安排方法有()A.B.C.D.【解析】选C.选固定一种粉刷方法,如黄色粉刷3间,蓝色粉刷2间,白色粉刷1间.则有种,三种颜色互换有种方法,由分步乘法计数原理知,不同的方案有种.2.(5分)中国足球超级联赛的计分规则是:胜一场得3分,平一场得1分,

8、负一场得0分.某赛季甲球队打完15场比赛后,球队积分是30分,则该队胜、负、平的情况共有()A.3种B.4种C.5种D.6种【解题指南】首先该球队胜x场、平y场、负z场,则x,y,z是非负整数,根据题意可得方程组然后根据取值范围,结合x,y,z是非负整数即可求得结论.【解析】选A.设该球队胜x场、平y场、负z场,则x,y,z是非负整数,且满足由得y=3,代入得z=2x-15,又因为0y15,0z15,所以所以7.5x10,因为x,y,z是非负整数,所以x的值为8,9,10,当x=8时,y=6,z=1;当x=9时,y=3,z=3;当x=10时,y=0,z=5;所以比赛结果是:胜8场、平6场、负1

9、场,胜9场、平3场、负3场,或是胜10场、平0场、负5场,故共有3种情况.3.(5分)(2020日照高二检测)为做好社区新冠肺炎疫情防控工作,需将六名志愿者分配到甲、乙、丙、丁四个小区开展工作,其中甲小区至少分配两名志愿者,其他三个小区至少分配一名志愿者,则不同的分配方案共有_种.(用数字作答)【解析】若甲小区分配3人,甲小区有种情况,剩下的3个小区有种情况,此时有=120种分配方法,若甲小区分配2人,甲小区有种情况,剩下的3个小区有种情况,此时有=540种分配方法,则有120+540=660种不同的分配方法.答案:6604.(5分)工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺

10、丝,首先随意拧一个螺丝,接着拧它对角线上的(距离它最远的,下同)螺丝,再随意拧第三个螺丝,第四个也拧它对角线上的螺丝,第五个和第六个以此类推,则不同的固定方式有_种.【解析】先随意拧一个螺丝,接着拧它对角线上的,有种方法,再随意拧第三个螺丝和其对角线上的,有种方法,然后随意拧第五个螺丝和其对角线上的,有种方法,所以总共的固定方式有=48种.答案:485.(10分)有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【解析】依0与1两个特殊值分析,可分三类:(1)取0不取1,可先从另四张卡片中选一张作百位,有种

11、方法;0可在后两位,有种方法;最后需从剩下的三张中任取一张,有种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有22个.(2)取1不取0,同上分析可得不同的三位数有22个.(3)0和1都不取,有不同三位数23个.综上所述,不同的三位数共有22+22+23=432(个).1.集合S=1,2,3,20的4元子集T=a1,a2,a3,a4中,任意两个元素的差的绝对值都不为1,这样的4元子集的个数为_个.【解题指南】不妨设a1a2a3a4,有a2-a12,a3-a22,a4-a32,a1,a2-1,a3-2,a4-3相当于从1,2,3,4,17中任意选出4个,所有的取法

12、共有,运算求得结果.【解析】不妨设a1a2a3a4,由于任意两个元素的差的绝对值都不为1,故有a2-a12,a3-a22,a4-a32,将a2,a3,a4分别减去1,2,3,这时a1,a2-1,a3-2,a4-3相当于从1,2,3,4,17中任意选出4个,所有的取法共有=2 380种不同的取法.答案:2 3802.(2020广州高二检测)如图,从左到右有5个空格.(1)若向这5个格子中填入0,1,2,3,4五个数,要求每个数都要用到,且第三个格子不能填0,则一共有多少不同的填法?(2)若给这5个空格涂上颜色,要求相邻格子不同色,现有红黄蓝3种颜色可供使用,问一共有多少种不同的涂法?(3)若向这

13、5个格子中放入7个不同的小球,要求每个格子里都有球,问有多少种不同的放法? 【解题指南】(1)根据题意,分2步进行分析:分析0;将其余的4个数字全排列,安排在其他四个格子中,由分步乘法计数原理计算可得答案;(2)根据题意,依次分析5个格子的涂色方法数目,由分步乘法计数原理计算可得答案;(3)根据题意,分2步进行分析:将7个小球分成5组,有2种分法,分组时,注意平均分组问题;将分好的5组全排列,对应5个空格,由分步乘法计数原理计算可得答案.【解析】(1)根据题意,分2步进行分析:第三个格子不能填0,则0有4种选法;将其余的4个数字全排列,安排在其他四个格子中,有种情况,则一共有4=96种不同的填法.(2)根据题意,第一个格子有3种颜色可选,即有3种情况,第二个格子与第一个格子的颜色不能相同,有2种颜色可选,即有2种情况,同理可得:第三、四、五个格子都有2种情况,则五个格子共有32222=48种不同的涂法.(3)根据题意,分2步进行分析:将7个小球分成5组,有2种分法:若分成2,2,1,1,1的5组,有种分组方法,若分成3,1,1,1,1的5组,有种分组方法,则共有种分组方法,将分好的5组全排列,对应5个空格,有种情况,则一共有=16 800种放法.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3