ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:509KB ,
资源ID:520845      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-520845-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年新教材高中数学 第七章 复数 7.2.1 复数的加、减运算及其几何意义课时素养检测(含解析)新人教A版必修第二册.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年新教材高中数学 第七章 复数 7.2.1 复数的加、减运算及其几何意义课时素养检测(含解析)新人教A版必修第二册.doc

1、课时素养检测 十七复数的加、减运算及其几何意义(30分钟60分)一、选择题(每小题4分,共24分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.(2020济宁高一检测)已知复数z在复平面上对应的点为(-1,1),则()A.z+1是实数B.z+1是纯虚数C.z+i是实数D.z+i是纯虚数【解析】选B.由题意可得,z=-1+i,则z+1=i为纯虚数,z+i=-1+2i是虚数,但不是纯虚数.2.若(1+i)+(2-3i)=a+bi(a,bR,i是虚数单位),则a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4【解析】选A.因为(1+i)+(2-3i)=a+bi,所

2、以3-2i=a+bi,所以a=3,b=-2.3.已知复数z1=1+2i,z2=3-4i,若z+z1=z2-z,则复数z=()A.1+3iB.1-3iC.2-6iD.3+4i【解析】选B.设z=a+bi,a,bR,由复数z1=1+2i,z2=3-4i,且z+z1=z2-z,得a+bi+1+2i=3-4i-(a+bi),得(a+1)+(b+2)i=(3-a)+(-4-b)i,所以a+1=3-a,b+2=-4-b,得a=1,b=-3,所以z=1-3i.【一题多解】选B.因为复数z1=1+2i,z2=3-4i,且z+z1=z2-z,所以2z=z2-z1=3-4i-(1+2i)=2-6i,所以z=1-3

3、i.4.设z1=2+bi,z2=a+i,a,bR,当z1+z2=0时,复数a+bi为()A.1+iB.2+iC.3D.-2-i【解析】选D.因为z1+z2=(2+bi)+(a+i)=(2+a)+(b+1)i,且z1+z2=0,所以解得所以a+bi=-2-i.【补偿训练】在复平面内,复数1+i和1+3i分别对应向量和,其中O为坐标原点,则|=()A.B.2C.D.4【解析】选B.由复数减法运算的几何意义知,对应的复数为(1+3i)-(1+i)=2i,所以|=2.5.如图,设向量,所对应的复数为z1,z2,z3,那么()A.z1-z2-z3=0B.z1+z2+z3=0C.z2-z1-z3=0D.z

4、1+z2-z3=0【解析】选D.由题图可知,+=0,所以+-=0,所以z1+z2-z3=0.【补偿训练】复数z=x+yi(x,yR)满足条件|z-4i|=|z+2|,则2x+4y的最小值为()A.2B.4C.4D.16【解析】选C.由|z-4i|=|z+2|,得|x+(y-4)i|=|x+2+yi|,所以x2+(y-4)2=(x+2)2+y2,即x+2y=3,所以2x+4y=2x+22y2=2=4,当且仅当x=2y=时,2x+4y取得最小值4.6.(多选题)下列关于复数的叙述正确的是()A.两个共轭复数的和是实数B.两个共轭复数的差是虚数C.两个共轭虚数的和是实数D.两个共轭虚数的差是虚数【解

5、析】选ACD.设复数z=a+bi,a,bR,则共轭复数=a-bi,所以有z+=2aR,z-=2bi,当b=0时,z-是实数,当b0时,z-是虚数,A正确,B不正确.设虚数z=a+bi,a,bR,且b0,则共轭虚数=a-bi,所以有z+=2aR,z-=2bi是虚数,C正确,D正确.二、填空题(每小题4分,共8分)7.计算(1-3i)-(2-4i)+(3+5i)=_.【解析】(1-3i)-(2-4i)+(3+5i)=(1-2+3)+(-3+4+5)i=2+6i.答案:2+6i8.已知|z|=3,且z+3i是纯虚数,则z=_.【解析】设z=a+bi,a,bR,由|z|=3,得a2+b2=9,且z+3

6、i=a+(b+3)i是纯虚数,得a=0,b=3,当z=-3i时,z+3i=0,不是纯虚数,所以z=3i.答案:3i【补偿训练】1.已知|z|=,且z-2+4i为纯虚数,则z=_.【解析】设复数z=x+yi(x,yR),则z-2+4i=(x-2)+(y+4)i.由题意知所以或所以z=2i.答案:2i2.已知向量和向量对应的复数分别为3+4i和2-i,则向量对应的复数为_.【解析】因为=-,所以对应复数为(2-i)-(3+4i)=-1-5i.答案:-1-5i三、解答题(每小题14分,共28分)9.已知复数z1=-1+2i,z2=1-i,z3=3-2i所对应的点分别为A,B,C.若=x+y,求x+y

7、的值.【解析】由于复数z1=-1+2i,z2=1-i,z3=3-2i所对应的点分别为A,B,C,所以=-1+2i,=1-i,=3-2i,因为=x+y,所以3-2i=x(-1+2i)+y(1-i),所以解得故x+y=5.10.已知z1=-3+i,z2=2+6i对应的向量分别为和,以OZ1,OZ2为邻边作平行四边形OZ1CZ2.求向量,对应的复数.【解析】由复数加减法的几何意义知,向量对应的复数为z1+z2=(-3+i)+(2+6i)=-1+7i,向量对应的复数z2-z1=(2+6i)-(-3+i)=5+5i;向量对应的复数z1-z2=-5-5i.(35分钟70分)一、选择题(每小题4分,共16分

8、,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.已知复数z1=1+3i,z2=2-ai,(aR),若z1+z2的和所对应的点在实轴上,则a的值为()A.1B.2C.3D.-3【解析】选C.由复数z1=1+3i,z2=2-ai,得z1+z2=3+(3-a)i,由于对应的点在实轴上,则a=3.2.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A,B,C,则平行四边形ABCD的对角线BD所对应的复数是()A.5-9iB.-5-3iC.7-11iD.-7+11i【解析】选C.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A,B,C,则=(-3,-2),=(

9、-4,5),=(2,1),所以平行四边形ABCD的对角线BD满足=+=(-)+(-)=(7,-11),所对应的复数是7-11i.3.(多选题)设z1,z2C,则下列关系正确的是()A.|z1+z2|z1|B.|z1-z2|z1|C.|z1+z2|z1|+|z2|D.|z1-z2|z1|+|z2|【解析】选CD.若z2=0时,|z1+z2|=|z1|,|z1-z2|=|z1|,故A,B不正确.设复数z1,z2对应平面向量,当与不共线时,|+|+|,当与方向相同时,|+|=|+|,故|+|+|,即|z1+z2|z1|+|z2|,C正确.当与不共线时,|-|+|,当与方向相反时,|-|=|+|,故|

10、-|+|,即|z1-z2|z1|+|z2|,D正确.4.复数z1=1+icos ,z2=sin -i,则|z1-z2|的最大值为()A.3-2B.-1C.3+2D.+1【解析】选D.|z1-z2|=|(1+icos )-(sin -i)|=+1.二、填空题(每小题4分,共16分)5.复平面内三点A,B,C,点A对应的复数为3-4i,向量对应的复数为1+2i,向量对应的复数为3-2i,则点C对应的复数为_.【解析】由点A对应的复数为3-4i,向量对应的复数为1+2i,向量对应复数为3-2i,得=+=+-=(3-4i)+(3-2i)-(1+2i)=5-8i,所以点C对应的复数为5-8i.答案:5-

11、8i6.如果复数z满足z+|z|=2-4i,则=_.【解析】设z=a+bi,a,bR,由z+|z|=2-4i,得a+bi+=2-4i,得b=-4,a+=2,所以a+=2,=2-a,两边平方,得a2+16=4-4a+a2,解得a=-3,所以z=-3-4i,=-3+4i.答案:-3+4i7.已知复平面上AOB的顶点A所对应的复数为1+2i,其重心G所对应的复数为1+i,则|+|=_.【解析】复平面上AOB的顶点A所对应的复数为1+2i,其重心G所对应的复数为1+i,设AB的中点为D,则=,由向量加法的平行四边形法则,得+=2=3=3+3i,故|+|=3.答案:38.复平面内有A,B,C三点,点A对

12、应的复数是3+i,向量对应的复数是-2-4i,向量对应的复数是-4-i,则B点对应的复数为_.【解析】因为表示的复数是2+4i,表示的复数是4+i,所以=-=(4+i)-(2+4i)=2-3i,故=+=(3+i)+(2-3i)=5-2i,所以B点对应的复数为zB=5-2i.答案:5-2i三、解答题(共38分)9.(12分)已知复数z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i,(x,yR),设z=z1-z2=14-11i,求z1+z2.【解析】由z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i(x,yR),z=z1-z2=14-11i,得(

13、5x-3y)+(x+4y)i=14-11i,所以解得所以z1=(3x+y)+(y-4x)i=-7i,z2=(4y-2x)-(5x+3y)i=-14+4i,z1+z2=-14-3i.10.(12分)已知z1,z2C,|z1|=|z2|=1,|z1+z2|=,求|z1-z2|.【解析】方法一:设z1=a+bi,z2=c+di,其中a,b,c,dR,则z1+z2=(a+c)+(b+d)i,z1-z2=(a-c)+(b-d)i,由|z1|2=|z2|2=1,|z1+z2|2=3,得a2+b2=1,c2+d2=1,(a+c)2+(b+d)2=3,将代入,得ac+bd=.所以|z1-z2|2=(a-c)2

14、+(b-d)2=a2+b2+c2+d2-2(ac+bd)=1,所以|z1-z2|=1.方法二:由z1,z2C,|z1|=|z2|=1,|z1+z2|=,根据复数与向量的对应关系以及平行四边形法则可知,z1,z2,z1+z2所对应的点围成菱形ABCD,如图,在ABC中,由余弦定理,得cosABC=-,所以ABC=120,BAD=60,所以ABD是等边三角形,所以=1,即=1.11.(14分)在平行四边形ABCD中,已知,对应的复数分别为z1=3+5i,z2=-1+2i.(1)求对应的复数;(2)求对应的复数;(3)求平行四边形ABCD的面积.【解析】(1)由于=+=+,所以=-.故对应的复数为z=z1-z2=(3+5i)-(-1+2i)=4+3i.(2)由于=-=-,所以对应的复数为(4+3i)-(-1+2i)=5+i.(3)由(1)(2)可知在平行四边形ABCD中,=(-1,2),=(4,3),所以cosDAB=.因此sinDAB=.所以平行四边形ABCD的面积S=|sinDAB=5=11.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3