ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:230.02KB ,
资源ID:51824      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-51824-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修2-2)课时作业:第一章 导数及其应用 1.3.2 .docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修2-2)课时作业:第一章 导数及其应用 1.3.2 .docx

1、1.3.2函数的极值与导数明目标、知重点1了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用2掌握函数极值的判定及求法3掌握函数在某一点取得极值的条件 1极值点与极值(1)极小值点与极小值如图,函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧f(x)0,右侧f(x)0,则把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值(2)极大值点与极大值如图,函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0;而且在点xb的左侧f(x)0,右侧f(x)0,则把点b叫做

2、函数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值(3)极大值点、极小值点统称为极值点,极大值和极小值统称为极值2求函数yf(x)的极值的方法解方程f(x)0,当f(x0)0时:(1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值情境导学在必修1中,我们研究了函数在定义域内的最大值与最小值问题但函数在定义域内某一点附近,也存在着哪一点的函数值大,哪一点的函数值小的问题,如何利用导数的知识来判断函数在某点附近函数值的大小问题?又如何求出这些值?这就是本节我们要研究的主要内容探究点一函数的

3、极值与导数的关系思考1如图观察,函数yf(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?yf(x)在这些点处的导数值是多少?在这些点附近,yf(x)的导数的符号有什么规律?答以d、e两点为例,函数yf(x)在点xd处的函数值f(d)比它在点xd附近其他点的函数值都小,f(d)0;在xd的附近的左侧f(x)0,右侧f(x)0.结论思考1中点d叫做函数yf(x)的极小值点,f(d)叫做函数yf(x)的极小值;点e叫做函数yf(x)的极大值点,f(e)叫做函数yf(x)的极大值极大值点、极小值点统称为极值点,极大值和极小值统称为极值思考2函数的极大值一定大于极小值吗?在区

4、间内可导函数的极大值和极小值是唯一的吗?答函数的极大值与极小值并无确定的大小关系,一个函数的极大值未必大于极小值;在区间内可导函数的极大值或极小值可以不止一个思考3若某点处的导数值为零,那么,此点一定是极值点吗?举例说明答可导函数的极值点处导数为零,但导数值为零的点不一定是极值点可导函数f(x)在x0处取得极值的充要条件是f(x0)0且在x0两侧f(x)的符号不同例如,函数f(x)x3可导,且在x0处满足f(0)0,但由于当x0时均有f(x)0,所以x0不是函数f(x)x3的极值点思考4函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(

5、a,b)内有_个极小值点答案1解析由图可知,在区间(a,x1),(x2,0),(0,x3)内f(x)0;在区间(x1,x2),(x3,b)内f(x)0,得x2;由f(x)0,得2x或x时,f(x)0;当x时,f(x)0.所以,f(x)的单调递增区间为(,)和(,);单调递减区间为(,)当x时,f(x)有极大值54;当x时,f(x)有极小值54.(2)由(1)的分析知yf(x)的图象的大致形状及走向如图所示所以,当54a54时,直线ya与yf(x)的图象有三个不同的交点,即方程f(x)a有三个不同的实根反思与感悟用求导的方法确定方程根的个数,是一种很有效的方法它通过函数的变化情况,运用数形结合思

6、想来确定函数图象与x轴的交点个数,从而判断方程根的个数跟踪训练3若函数f(x)2x36xk在R上只有一个零点,求常数k的取值范围解f(x)2x36xk,则f(x)6x26,令f(x)0,得x1或x1,可知f(x)在(1,1)上是单调减函数,f(x)在(,1)和(1,)上是单调增函数f(x)的极大值为f(1)4k,f(x)的极小值为f(1)4k.要使函数f(x)只有一个零点,只需4k0(如图所示)或即k4.k的取值范围是(,4)(4,)1“函数yf(x)在一点的导数值为0”是“函数yf(x)在这点取得极值”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案B解析对于f

7、(x)x3,f(x)3x2,f(0)0,不能推出f(x)在x0处取极值,反之成立故选B.2.函数f(x)的定义域为R,导函数f(x)的图象如图所示,则函数f(x)()A无极大值点,有四个极小值点B有三个极大值点,两个极小值点C有两个极大值点,两个极小值点D有四个极大值点,无极小值点答案C解析f(x)的符号由正变负,则f(x0)是极大值,f(x)的符号由负变正,则f(x0)是极小值,由图象易知有两个极大值点,两个极小值点3已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围为()A1a2 B3a6Ca2 Da6答案D解析f(x)3x22axa6,因为f(x)既有极大值又有极小值,那

8、么(2a)243(a6)0,解得a6或a0,a1.5直线ya与函数yx33x的图象有三个相异的交点,则a的取值范围是_答案2a2解析f(x)3x23.令f(x)0可以得到x1或x1,f(1)2,f(1)2,2a2.呈重点、现规律1在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值2函数的极值是函数的局部性质可导函数f(x)在点xx0处取得极值的充要条件是f(x0)0且在xx0两侧f(x)符号相反3利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题一、基础过关1.函数yf(x)的定义域为(a,b),yf(x)的图象如图,则函数yf(x)在开区间(a,b

9、)内取得极小值的点有()A1个 B2个C3个 D4个答案A解析当满足f(x)0的点,左侧f(x)0时,该点为极小值点,观察题图,只有一个极小值点2下列关于函数的极值的说法正确的是()A导数值为0的点一定是函数的极值点B函数的极小值一定小于它的极大值C函数在定义域内有一个极大值和一个极小值D若f(x)在(a,b)内有极值,那么f(x)在(a,b)内不是单调函数答案D解析由极值的概念可知只有D正确3若a0,b0,且函数f(x)4x3ax22bx2在x1处有极值,则ab的最大值等于()A2 B3 C6 D9答案D解析f(x)12x22ax2b,f(x)在x1处有极值,f(1)122a2b0,ab6.

10、又a0,b0,ab2,26,ab9,当且仅当ab3时等号成立,ab的最大值为9.4函数yx33x29x(2x2)有()A极大值5,极小值27B极大值5,极小值11C极大值5,无极小值D极小值27,无极大值答案C解析由y3x26x90,得x1或x3,当x3时,y0,当1x3时,y0;当x(1,)时,f(x)0;当x(1,)时,f(x)0C当x(,1)时,f(x)0D当x(,1)时,f(x)0;当x(1,)时,f(x)0答案C解析f(x)在x1处存在极小值,x1时,f(x)1时,f(x)0.6若函数yx33axa在(1,2)内有极小值,则实数a的取值范围是()A1a2 B1a4C2a4或a0时,y

11、3x23a0x,不难分析,当12,即1a0)有极大值,求m的值解f(x)3x2mx2m2(xm)(3x2m),令f(x)0,则xm或xm.当x变化时,f(x),f(x)的变化情况如下表:x(,m)mmf(x)00f(x)单调递增极大值单调递减极小值单调递增f(x)极大值f(m)m3m32m34,m1.12设a为实数,函数f(x)x3x2xa.(1)求f(x)的极值;(2)当a在什么范围内取值时,曲线yf(x)与x轴仅有一个交点?解(1)f(x)3x22x1.令f(x)0,则x或x1.当x变化时,f(x),f(x)的变化情况如下表:x(,)(,1)1(1,)f(x)00f(x)单调递增极大值单调

12、递减极小值单调递增所以f(x)的极大值是f()a,极小值是f(1)a1.(2)函数f(x)x3x2xa(x1)2(x1)a1,由此可知,x取足够大的正数时,有f(x)0,x取足够小的负数时,有f(x)0,所以曲线yf(x)与x轴至少有一个交点由(1)知f(x)极大值f()a,f(x)极小值f(1)a1.曲线yf(x)与x轴仅有一个交点,f(x)极大值0,即a0,a1,当a(,)(1,)时,曲线yf(x)与x轴仅有一个交点三、探究与拓展13已知函数f(x)exln(xm)(1)设x0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m2时,证明f(x)0.(1)解f(x)exln(xm)

13、f(x)exf(0)e00m1,定义域为x|x1,f(x)ex,显然f(x)在(1,0上单调递减,在0,)上单调递增(2)证明令g(x)exln(x2),则g(x)ex(x2)h(x)g(x)ex(x2)h(x)ex0,所以h(x)是单调递增函数,h(x)0至多只有一个实数根,又g()0,所以h(x)g(x)0的唯一实根在区间内,设g(x)0的根为t,则有g(t)et0,所以,ett2et,当x(2,t)时,g(x)g(t)0,g(x)单调递增;所以g(x)ming(t)etln(t2)t0,当m2时,有ln(xm)ln(x2),所以f(x)exln(xm)exln(x2)g(x)g(x)min0.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3