ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:129.98KB ,
资源ID:517420      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-517420-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年高考数学一轮复习 考点规范练20 函数y=Asin(ωx φ)的图象及应用(含解析)新人教A版.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年高考数学一轮复习 考点规范练20 函数y=Asin(ωx φ)的图象及应用(含解析)新人教A版.docx

1、考点规范练20函数y=Asin(x+)的图象及应用基础巩固1.已知简谐运动f(x)=2sin3x+|2的图象经过点(0,1),则该简谐运动的最小正周期T和初相分别为()A.T=6,=6B.T=6,=3C.T=6,=6D.T=6,=3答案:A解析:最小正周期为T=23=6;由2sin=1,得sin=12,又|2,所以=6.2.要得到函数y=cos(2x+1)的图象,只要将函数y=cos 2x的图象()A.向左平移1个单位长度B.向右平移1个单位长度C.向左平移12个单位长度D.向右平移12个单位长度答案:C解析:y=cos(2x+1)=cos2x+12,只要将函数y=cos2x的图象向左平移12

2、个单位长度即可.3.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin6x+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10答案:C解析:因为sin6x+-1,1,所以函数y=3sin6x+k的最小值为k-3,最大值为k+3.由题图可知函数最小值为k-3=2,解得k=5.所以y的最大值为k+3=5+3=8,故选C.4.将函数f(x)=sin(2x+)的图象向左平移8个单位,所得到的函数图象关于y轴对称,则的一个可能取值为()A.34B.4C.0D.-4答案:B解析:由题意可知平移后的函数为y=sin2x+8+=sin2x+4+.由平移后的函数图

3、象关于y轴对称,可得4+=k+2(kZ),即=k+4(kZ),故选B.5.将函数y=sin2x+5的图象向右平移10个单位长度,所得图象对应的函数()A.在区间-4,4上单调递增B.在区间-4,0上单调递减C.在区间4,2上单调递增D.在区间2,上单调递减答案:A解析:将函数y=sin2x+5的图象向右平移10个单位长度,所得图象对应的函数解析式为y=sin2x-10+5=sin2x,该函数在区间-4+k,4+k(kZ)上单调递增,在区间4+k,34+k(kZ)上单调递减,结合选项可知选A.6.若函数f(x)=2sin 2x的图象向右平移02个单位后得到函数g(x)的图象,若对满足|f(x1)

4、-g(x2)|=4的x1,x2,有|x1-x2|的最小值为6,则=()A.6B.4C.3D.512答案:C解析:由函数f(x)=2sin2x的图象向右平移02个单位后得到函数g(x)=2sin2(x-)的图象,可知对满足|f(x1)-g(x2)|=4的x1,x2,有|x1-x2|的最小值为T2-.故T2-=6,即=3.7.设函数f(x)=cosx+6在区间-,的图象大致如下图,则f(x)的最小正周期为()A.109B.76C.43D.32答案:C解析:由题图知f-49=cos-49+6=0,所以-49+6=2k-2(kZ),化简得=3-9k2(kZ).因为T22T,即2|24|,所以1|0,0

5、,|0,0,|2的图象,可得A=2,142=56-13,求得=.根据五点作图法可得13+=2,2k(kZ),结合|2,求得=6,故f(x)=2sinx+6.把f(x)的图象向左平移12个单位长度后,得到函数g(x)=2sinx+12+6=2cosx+6的图象,则g52=2cos52+6=2cos23=-1,故选A.9.若关于x的方程2sin2x+6=m在区间0,2上有两个不等实根,则m的取值范围是()A.(1,3)B.0,2C.1,2)D.1,3答案:C解析:方程2sin2x+6=m可化为sin2x+6=m2,当x0,2时,2x+66,76,画出函数y=f(x)=sin2x+6在区间0,2上的

6、图象,如图所示.由题意,得12m21,即1m0,-22图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移6个单位长度得到y=sin x的图象,则f6=.答案:22解析:函数f(x)=sin(x+)图象上每一点的横坐标缩短为原来的一半,得到y=sin(2x+)的图象,再向右平移6个单位长度,得到y=sin2x-6+=sin2x-3+的图象.由题意知sin2x-3+=sinx,所以2=1,-3+=2k(kZ),又-22,所以=12,=6,所以f(x)=sin12x+6.所以f6=sin126+6=sin4=22.11.已知函数y=g(x)的图象由f(x)=sin 2x的图象向右平移(0)

7、个单位得到,这两个函数的部分图象如图所示,则=.答案:3解析:函数f(x)=sin2x的图象在y轴右侧的第一个对称轴为2x=2,则x=4.x=8关于x=4对称的直线为x=38,由图象可知,通过向右平移之后,横坐标为x=38的点平移到x=1724,则=1724-38=3.12.设函数f(x)=sin2x+6,则下列命题:f(x)的图象关于直线x=3对称;f(x)的图象关于点6,0对称;f(x)的最小正周期为,且在区间0,12上为增函数;把f(x)的图象向右平移12个单位长度,得到一个奇函数的图象.其中真命题的序号为.答案:解析:对于,f3=sin23+6=sin56=12,不是最值,因此x=3不

8、是函数f(x)的图象的对称轴,故该命题错误;对于,f6=sin26+6=10,因此点6,0不是函数f(x)的图象的对称中心,故该命题错误;对于,函数f(x)的最小正周期为T=22=,当x0,12时,令t=2x+66,3,显然函数y=sint在区间6,3上为增函数,因此函数f(x)在区间0,12上为增函数,故该命题正确;对于,把f(x)的图象向右平移12个单位长度后所对应的函数为g(x)=sin2x-12+6=sin2x,是奇函数,故该命题正确.能力提升13.已知函数f(x)=Asin(x+)(A,均为正常数)的最小正周期为,当x=23时,函数f(x)取得最小值,则下列结论正确的是()A.f(2

9、)f(-2)f(0)B.f(0)f(2)f(-2)C.f(-2)f(0)f(2)D.f(2)f(0)0,f(2)=Asin4+6=32Asin4+A2cos40,f(-2)=Asin-4+6=-32Asin4+A2cos4.因为f(2)-f(-2)=3Asin40,所以f(2)f(-2).又f(-2)-f(0)=-Asin4-6-A2=-Asin4-6+12,因为4-6+6sin+6=-12,即sin4-6+120,所以f(-2)f(0).综上,f(2)f(-2)0,|2,118-58142,所以231.所以排除C,D.当=23时,f58=2sin5823+=2sin512+=2,所以sin5

10、12+=1.所以512+=2+2k,即=12+2k(kZ).因为|0,4a23,4a76,解得6a724.16.(2021全国,文15)已知函数f(x)=2cos(x+)的部分图象如图所示,则f2=.答案:-3解析:设f(x)的最小正周期为T,由题中图象可知,34T=1312-3,则T=,所以|=2.当=2时,由2cos136+=2,得=-6+2k,kZ;当=-2时,由2cos-136+=2,得=6+2k,kZ;所以f(x)=2cos2x-6,则f2=2cos56=-3.17.已知函数y=3sin12x-4.(1)用五点法作出函数的图象;(2)说明此图象是由y=sin x的图象经过怎么样的变化

11、得到的.解:(1)列表:x23252729212x-4023223sin12x-4030-30描点、连线,如图所示:(2)(方法一)“先平移,后伸缩”.先把y=sinx的图象上所有点向右平移4个单位长度,得到y=sinx-4的图象,再把y=sinx-4的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin12x-4的图象,最后将y=sin12x-4的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin12x-4的图象.(方法二)“先伸缩,后平移”先把y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin12x的图象,再把y=sin12x

12、图象上所有的点向右平移2个单位长度,得到y=sin12x-2=sinx2-4的图象,最后将y=sinx2-4的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin12x-4的图象.高考预测18.已知函数f(x)=3cos2x-3-2sin xcos x.(1)求f(x)的最小正周期;(2)求证:当x-4,4时,f(x)-12.答案:(1)解f(x)=32cos2x+32sin2x-sin2x=12sin2x+32cos2x=sin2x+3.所以f(x)的最小正周期T=22=.(2)证明因为-4x4,所以-62x+356.所以sin2x+3sin-6=-12.所以当x-4,4时,f(x)-12.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1