ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:63KB ,
资源ID:516649      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-516649-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京市延庆县第三中学人教B版高二数学选修2-3教案:计数原理复习与小结 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

北京市延庆县第三中学人教B版高二数学选修2-3教案:计数原理复习与小结 .doc

1、【教学目标】1. 理解两个原理,并会应用解题;2. 掌握排列组合的概念并且会灵活运用;3. 掌握二项式定理的内容和熟练运用解题。【导入新课】复习回顾:1.加法原理与乘法原理;2.排列和排列数的概念、组合与组合数的概念,以及灵活运用解题;3二项式定理的内容。新授课阶段主干知识梳理1分类计数原理和分步计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘2排列与组合(1)排列:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列从n个不同元

2、素中取出m个元素的排列数公式是An(n1)(n2)(nm1)或写成A.(2)组合:从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合从n个不同元素中取出m个元素的组合数公式是C,或写成C.(3)组合数的性质CC;CCC.3二项式定理(1)定理:(ab)nCanb0Can1bCan2b2CanrbrCa0bn(r0,1,2,n)(2)二项展开式的通项Tr1Canrbr,r0,1,2,n,其中C叫做二项式系数(3)二项式系数的性质最大值:当n为偶数时,中间的一项的二项式系数 取得最大值;当n为奇数时,中间的两项的二项式系数相等,且同时取得最大值各二项式系数的和

3、aCCCCC2n;bCCCCCC2n2n1.典例分析题型一两个计数原理例1、如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有()A180种 B240种C360种 C420种题型二排列与组合例2 4个不同的球,4个不同的盒子,把球全部放入盒内(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?来源:.Com题型三求二项展开式的通项、指定项例3设f(x)(1x)m(1x)n展开式中x的系数是19(m,nN*)(1)求f(x)展开式中x2的系数的最小值;(

4、2)当f(x)展开式中x2的系数取最小值时,求f(x)展开式中x7的系数探究提高 二项式定理是一个恒等式,求二项展开式中某指定项的系数、二项式系数或指定项问题,是二项式定理的常考问题,通常用通项公式来解决在应用通项公式时,要注意以下几点:(1)它表示二项展开式的任意项,只要n与r确定,该项就随之确定;(2)Tr1是展开式中的第r1项,而不是第r项;(3)公式中a,b的指数和为n且a,b不能随便颠倒位置;(4)要将通项中的系数和字母分离开,以便于解决问题;(5)对二项式(ab) n展开式的通项公式要特别注意符号问题题型四二项式定理中的“赋值”问题例4若(12x) 2 011a0a1xa2 011

5、x2 011(xR),则的值为_探究提高 在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法例5 把3盆不同的兰花和4盆不同的玫瑰花摆放在右图图案中的1,2,3,4,5,6,7所示的位置上,其中三盆兰花不能放在一条直线上,则不同的摆放方法为_种(用数字回答)例6 已知()n的展开式中,各项系数的和与各项二项式系数的和之比为64,则(1x)n的展开式中系数最小的项是第_项课堂小结1排列、组合应用题的解题策略 (2)区分某一问题是排列还是组合问题,关键看选出的元素与顺序是否有关若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有

6、影响,则是组合问题也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关(3)排列、组合综合应用问题的常见解法:特殊元素(特殊位置)优先安排法;合理分类与准确分步;排列、组合混合问题先选后排法;相邻问题捆绑法;不相邻问题插空法;定序问题倍缩法;多排问题一排法;“小集团”问题先整体后局部法;构造模型法;正难则反、等价转化法2二项式定理是一个恒等式,对待恒等式通常有两种思路:一是利用恒等定理(两个多项式恒等,则对应项系数相等);二是赋值这两种思路相结合可以使得二项展开式的系数问题迎刃而解另外,通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数,在运用公式时要注意以下几点:(1)Canrbr是第r1项,而不是第r项;(2)运用通项公式Tr1Canrbr解题,一般都需先转化为方程(组)求出n、r,然后代入通项公式求解(3)求展开式的特殊项,通常都是由题意列方程求出r,再求出所需的某项;有时需先求n,计算时要注意n和r的取值范围及它们之间的大小关系课堂练习1、如图所示为一电路图,从A到B共有_条不同的线路可通电2、 (1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?3、(1xx2)(x)6的展开式中的常数项为_

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3