1、 学习目标 1能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2三角形的面积及有关恒等式 学习过程 一、课前准备复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决复习2:基本解题思路是:分析此题属于哪种类型(距离、高度、角度);依题意画出示意图,把已知量和未知量标在图中;确定用哪个定理转化,哪个定理求解;进行作答,并注意近似计算的要求二、新课导学 典型例题例1. 某观测站C在目标A的南偏西方向,从A出发有一条南偏东走向的公路,在C处测得与C相距31的公路上有一人正沿着此公路向A走去,走20到达D,此时测得CD距离为21,求此人在D处距A还有多远? 例2. 在某点
2、B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高60021DCBAADBC例3. 如图,在四边形ABCD中,AC平分DAB,ABC=60,AC=7,AD=6,SADC=,求AB的长 动手试试练1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30,测得塔基B的俯角为45,则塔AB的高度为多少m?练2. 两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?三、总结提升 学习小结1
3、. 解三角形应用题的基本思路,方法; 2应用举例中测量问题的强化. 知识拓展秦九韶“三斜求积”公式: 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 某人向正东方向走后,向右转,然后朝新方向走,结果他离出发点恰好,则等于( ). A B C或 D32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为,则塔高为( )米A B C D3. 在ABC中,面积为,那么的长度为( ).A B C D4. 从200米高的山顶A处测得地面上某两个景点B、C的俯角分别是30和45,且BAC45,则这两个景点B、C之间的距离 5. 一货轮航行到M处,测得灯塔S在货轮的北偏东15相距20里处,随后货轮按北偏西30的方向航行,半小时后,又测得灯塔在货轮的北偏东,则货轮的速度 课后作业 1. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤对地面的倾斜角.2. 已知a,b,c为ABC的三个内角A,B,C的对边,向量m(),n(cosA,sinA). 若mn,且acosB+bcosA=csinC,求角B.3. 【2014江苏】(本小题满分14分)已知,.(1)求的值;(2)求的值.