ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:236.50KB ,
资源ID:514154      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-514154-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《原创》2013—2014学年高二数学必修四导学案:2.1向量的概念及表示.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

《原创》2013—2014学年高二数学必修四导学案:2.1向量的概念及表示.doc

1、课题: 2.1向量的概念及表示班级: 姓名: 学号: 第 学习小组【学习目标】1、了解向量的概念,会用字母表示向量,理解向量的几何表示。2、理解零向量、单位向量、平行向量、相等向量、共线向量,相反向量的概念。【课前预习】问题1、位移和距离两个量有什么不同?问题2、举例说明只有大小的量_;既有大小又有方向的量_。1、向量的概念(两要素)_2、如何表示向量?3、_向量的模,_叫零向量,_叫单位向量。4、_平行向量_共线向量_相等向量_相反向量。5、平面直角坐标系内,起点在坐标原点的单位向量,它们的终点的轨迹是_【课堂研讨】例1、如图,已知为正六边形的中心,在图中所标出的向量中:ABCOFED(1)

2、试找出与共线的向量; (2)确定与相等的向量;(3)与相等吗?例2、如图,四边形与都是平行四边形。ADBCE(1)用有向线段表示与向量相等的向量;(2)用有向线段表示与向量共线的向量。例3、在如图中的的方格纸中有一个向量,分别以图中的格点为起点和终点作向量,其中与相等的向量有多少个?与长度相等的共线向量有多少个(除外)?AB【学后反思】【课堂检测】 2.1课题:向量的概念1、在质量、重力、速度、加速度、身高、面积、体积这些量中,_是数量,_是向量.2、在下列结论中,正确的是_(1)若两个向量相等,则它们的起点和终点分别重合;(2)模相等的两个平行向量是相等的向量;(3)若和都是单位向量,则;(

3、4)两个相等向量的模相等。3、设是正的中心,则向量,是( )A、相等向量 B、模相等的向量 C、共线向量 D、共起点的向量4、写出图中所示各向量的长度(小正方形的边长为)BADACEF【课后巩固】1、已知是正方形对角线的交点,在以这5点中任一点为起点,另一点为终点的所有向量中,写出:(1)与相等的向量;(2)与长度相等的向量;(3)与共线的向量。2、长度相等的向量是相等向量吗?相等向量是共线向量吗?平行于同一个非零向量的两个向量是共线向量吗?请举例说明。3、如图是正方形对角线的交点,四边形,都是正方形。在图中所示的向量中:FEDCABOO(1)分别写出与,相等的向量;(2)写出与共线的向量;(

4、3)写出与的模相等的向量;(4)向量与是否相等?4、在如图所示的向量中(小正方形的边长为),是否存在:(1)共线向量 (2)相反向量 (3)相等向量 (4)模相等的向量若存在,分别写出这些向量。 课题: 2.1向量的概念及表示班级: 姓名: 学号: 第 学习小组【学习目标】1、了解向量的概念,会用字母表示向量,理解向量的几何表示。2、理解零向量、单位向量、平行向量、相等向量、共线向量,相反向量的概念。【课前预习】问题1、位移和距离两个量有什么不同?问题2、举例说明只有大小的量_;既有大小又有方向的量_。1、向量的概念(两要素)_2、如何表示向量?3、_向量的模,_叫零向量,_叫单位向量。4、_

5、平行向量_共线向量_相等向量_相反向量。5、平面直角坐标系内,起点在坐标原点的单位向量,它们的终点的轨迹是_【课堂研讨】例1、如图,已知为正六边形的中心,在图中所标出的向量中:ABCOFED(1)试找出与共线的向量; (2)确定与相等的向量;(3)与相等吗?例2、如图,四边形与都是平行四边形。ADBCE(1)用有向线段表示与向量相等的向量;(2)用有向线段表示与向量共线的向量。例3、在如图中的的方格纸中有一个向量,分别以图中的格点为起点和终点作向量,其中与相等的向量有多少个?与长度相等的共线向量有多少个(除外)?AB【学后反思】【课堂检测】 2.1课题:向量的概念1、在质量、重力、速度、加速度

6、、身高、面积、体积这些量中,_是数量,_ _是向量.2、在下列结论中,正确的是_(1)若两个向量相等,则它们的起点和终点分别重合;(2)模相等的两个平行向量是相等的向量;(3)若和都是单位向量,则;(4)两个相等向量的模相等。3、设是正的中心,则向量,是( )A、相等向量 B、模相等的向量 C、共线向量 D、共起点的向量4、写出图中所示各向量的长度(小正方形的边长为)BADACEF【课后巩固】1、已知是正方形对角线的交点,在以这5点中任一点为起点,另一点为终点的所有向量中,写出:(1)与相等的向量;(2)与长度相等的向量;(3)与共线的向量。2、长度相等的向量是相等向量吗?相等向量是共线向量吗?平行于同一个非零向量的两个向量是共线向量吗?请举例说明。3、如图是正方形对角线的交点,四边形,都是正方形。在图中所示的向量中:FEDCABOO(1)分别写出与,相等的向量;(2)写出与共线的向量;(3)写出与的模相等的向量;(4)向量与是否相等?4、在如图所示的向量中(小正方形的边长为),是否存在:(1)共线向量 (2)相反向量 (3)相等向量 (4)模相等的向量若存在,分别写出这些向量。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1