1、第1课时一、选择题1设Sn为等差数列an的前n项和,S84a3,a72,则a9()A6B4C2D2答案A解析本题考查数列的基础知识和运算能力.a9a18d6.2四个数成等差数列,S432,a2a313,则公差d等于()A8B16C4D0答案A解析a2a313,d2a1.又S44a1d8a132,a14,d8.3等差数列an中,a3a7a108,a11a414.记Sna1a2a3an,则S13()A168B156C152D286答案D解析,S1313a1d286.4在等差数列an和bn中,a125,b115,a100b100139,则数列anbn的前100项的和为()A0B4475C8950D1
2、0 000答案C解析设cnanbn,则c1a1b140,c100a100b100139,cn是等差数列,前100项和S1008950.5已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是()A5B4C3D2答案C解析设等差数列为an,公差为d,则,5d15,d3.6设Sn是等差数列an的前n项和,若,则()A1B1C2D答案A解析1,故选A二、填空题7已知数列an的通项公式an5n2,则其前n项和Sn_.答案解析an5n2,an15n7(n2),anan15n2(5n7)5(n2)数列an是首项为3,公差为5的等差数列Sn.8设等差数列an的前n项和为Sn,若S972,
3、则a2a4a9_.答案24解析S972,a1a916,即a1a18d16,a14d8,又a2a4a9a1da13da18d3(a14d)3824.三、解答题9已知等差数列an(1)a1,a15,Sn5,求n和d;(2)a14,S8172,求a8和D解析(1)a15(151)d,d.又Snna1d5,解得n15,n4(舍)(2)由已知,得S8,解得a839,又a84(81)d39,d5.10设an是等差数列,前n项和记为Sn,已知a1030,a2050.(1)求通项an;(2)若Sn242,求n的值解析(1)设公差为d,则a20a1010d20,d2.a10a19da11830,a112.ana
4、1(n1)d122(n1)2n10.(2)Snn211n242,n211n2420,n11.一、选择题1等差数列an的前n项和记为Sn,若a2a4a15的值为一个确定的常数,则下列各数中也是常数的是()AS7BS8CS13DS15答案C解析a2a4a153a118d3(a16d)3a7为常数,S1313a7为常数2等差数列an的前n项和为Sn,若S22,S410,则S6等于()A12B18C24D42答案C解析S2,S4S2,S6S4成等差数列,2(S4S2)S2S6S4,2(102)2S610,S624.3设Sn是等差数列an的前n项和,若,则等于()ABCD答案A解析据等差数列前n项和性质
5、可知:S3,S6S3,S9S6,S12S9仍成等差数列设S3k,则S63k,S6S32k,S9S63k,S12S94k,S9S63k6k,S12S94k10k,.4(2013新课标理,7)设等差数列an的前n项和为Sn,Sm12,Sm0,Sm13,则m()A3B4C5D6答案C解析本题考查数列的前n项和Sn与通项an的关系及等差数列的定义SmSm1am2,Sm1Smam13,dam1am321.Sma1m10,ama1(m1)12,a13m.代入得3mm20,m0(舍去),m5,故选C二、填空题5已知等差数列an的前n项和为Sn,若a1a200,且A、B、C三点共线(该直线不过原点O),则S2
6、00_.答案100解析a1a200,且A、B、C三点共线,a1a2001,S200100.6已知数列an的前n项和为Sn,且Sn2an2,则S3等于_答案14解析对于Sn2an2,当n1时,有a12a12,解得a12;当n2时,有S22a22,即a1a22a22,所以a2a124;当n3时,有S32a32,即a1a2a32a32,所以a3a2a12,又a12,a24,则a38,所以S32a3214.三、解答题7一个等差数列的前10项之和为100,前100项之和为10,求前110项之和解析设等差数列an的公差为d,前n项和为Sn,则Snna1D由已知得10整理得d,代入得,a1,S110110a1d110110110.8设an为等差数列,Sn为数列an的前n项和,已知S77,S1575,Tn为数列的前n项和,求数列的前n项和Tn.解析设等差数列an的公差为d,则Snna1n(n1)DS77,S1575,即,解得a12,d1.a1(n1)d2(n1),数列是等差数列,其首项为2,公差为,Tnn2n.