ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:815KB ,
资源ID:513107      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-513107-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《同步辅导》2015高中数学北师大版选修2-2导学案:《复数代数形式的乘除运算》.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《同步辅导》2015高中数学北师大版选修2-2导学案:《复数代数形式的乘除运算》.doc

1、第3课时复数代数形式的乘除运算1.理解复数的代数形式的四则运算,并能用运算律进行复数的四则运算.2.能根据所给运算的形式选择恰当的方法进行复数的四则运算.两个多项式可以进行乘除法运算,例如(a+b)(c+d)=ac+ad+bc+bd;对于两个复数a+bi,c+di(a,b,c,dR),能像多项式一样进行乘除法运算吗?问题1:结合多项式乘法运算的特点,说明复数乘法运算有哪些特点?(1)复数的乘法与多项式的乘法类似,只是在运算过程中把i2换成,然后实部、虚部分别合并;(2)两个复数的积仍是一个复数;(3)复数的乘法与实数的乘法一样,满足交换律、结合律及分配律;(4)在复数范围内,实数范围内正整数指

2、数幂的运算律仍然成立.问题2:什么是共轭复数? 一般地,当两个复数的时,这两个复数叫作互为共轭复数.问题3:怎样进行复数除法运算?复数的除法首先是写成分数的形式,再利用两个互为共轭复数的积是一个实数,将分母化为实数,从而化成一个具体的复数.问题4:复数的四种基本运算法则(1)加法:(a+bi)+(c+di)=;(2)减法:(a+bi)-(c+di)=;(3)乘法:(a+bi)(c+di)=;(4)除法:(a+bi)(c+di)=(c+di0).1.i是虚数单位,复数z=的虚部是().A.0B.-1C.1D.22.复数z1=3+i,z2=1-i,则z=z1z2在复平面内的对应点位于().A.第一

3、象限B.第二象限C.第三象限D.第四象限3.已知复数z与(z+2)2-8i均是纯虚数,则z=.4.设复数z满足i(z+1)=-3+2i(i为虚数单位),试求z的实部.复数代数形式的乘法运算计算:(1)(1-i)(1+i)+(-1+i);(2)(2-i)(-1+5i)(3-4i)+2i;(3)(4-i5)(6+2i7)+(7+i11)(4-3i)(4)(1-i)3.复数代数形式的除法运算计算:(1)(1+2i)(3-4i);(2);(3)(+i)4+.复数四则运算的综合应用已知|z|2+(z+)i=(i为虚数单位),试求满足条件的z.计算:(1)(1-i)2;(2)(-+i)(+i)(1+i).

4、计算:(1);(2)+.若关于x 的方程x2+(t2+3t+tx)i=0有纯虚数根,求实数t的值和该方程的根.1.复数z=(i为虚数单位),则|z|等于().A.25B.C.5D.2.i是虚数单位,则复数+(1+2i)2等于().A.-2-5iB.5-2iC.5+2iD.-2+5i3.若复数z满足z(1+i)=2,则复数z=.4.计算:+()2014.(2014年山东卷)已知a,bR,i是虚数单位.若a-i与2+bi互为共轭复数,则(a+bi)2=().A.5-4iB.5+4iC.3-4iD.3+4i考题变式(我来改编):答案第3课时复数代数形式的乘除运算知识体系梳理问题1:(1)-1问题2:

5、实部相等,虚部互为相反数问题4:(1)(a+c)+(b+d)i(2)(a-c)+(b-d)i(3)(ac-bd)+(ad+bc)i(4)+i基础学习交流1.Bz=-i,虚部为-1,故选B.2.Dz=z1z2=(3+i)(1-i)=4-2i.3.-2i设z=bi(bR),则(z+2)2-8i=(bi+2)2-8i=4-b2+(4b-8)i,依题意得解得b=-2.所以z=-2i.4.解:(法一)i(z+1)=-3+2i,z=-1=-(-3i-2)-1=1+3i,故z的实部是1.(法二)令z=a+bi(a、bR),由i(z+1)=-3+2i,得i(a+1)+bi=-3+2i,-b+(a+1)i=-3

6、+2i,a+1=2,a=1.故z的实部是1.重点难点探究探究一:【解析】(1)(1-i)(1+i)+(-1+i)=1-i2-1+i=1+i.(2)(2-i)(-1+5i)(3-4i)+2i=(-2+10i+i-5i2)(3-4i)+2i=(-2+11i+5)(3-4i)+2i=(3+11i)(3-4i)+2i=(9-12i+33i-44i2)+2i=53+21i+2i=53+23i.(3)(4-i5)(6+2i7)+(7+i11)(4-3i)=(4-i)(6-2i)+(7-i)(4-3i)=(24-8i-6i+2i2)+(28-21i-4i+3i2)=47-39i.(4)(1-i)3=13-3

7、12i+31i2-i3=1-3i-3-(-i)=-2-2i.【小结】三个或三个以上的复数相乘可按从左到右的顺序运算或利用结合律运算,混合运算与实数的运算顺序一样,对于能够使用乘法公式计算的两个复数的乘法,用乘法公式更简捷,如平方差公式、立方差公式、完全平方公式等.探究二:【解析】(1)(1+2i)(3-4i)=-+i.(2)(法一)原式=1.(法二)原式=1.(3)原式=(+i)22+=(-+i)2-=-i+i-=(-)+(-)i.【小结】进行复数的运算,除了应用四则运算法则之外,对于一些简单算式要知道其结果,这样可方便计算,简化运算过程,比如=-i,(1+i)2=2i,(1-i)2=-2i,

8、=i,=-i,a+bi=i(b-ai),=i,等等.运算方法要灵活,有时要巧妙运用相应实数系中的乘法公式,比如第(2)题中的解法一.探究三:【解析】原方程化简为|z|2+(z+)i=1-i,设z=x+yi(x,yR),代入上述方程得x2+y2+2xi=1-i,原方程的解为z=-i.【小结】对于此类复数方程我们一般是设出复数的代数形式z=x+yi(x,yR),然后将其代入给定方程,利用复数四则运算将其整理,然后利用复数相等的充要条件来求解.思维拓展应用应用一:(1)(1-i)2=1-2i+i2=-2i.(2)(-+i)(+i)(1+i)=(-)+(-)i(1+i)=(-+i)(1+i)=(-)+

9、(-)i=-+i.应用二:(1)=1-i.(2)+=+=i-i=0.应用三:设x=ai(aR且a0)是方程x2+(t2+3t+tx)i=0的一个纯虚根,将其代入方程可得(ai)2+(t2+3t+tai)i=0,-a2-at+(t2+3t)i=0,由复数相等的充要条件可得故t=-3,方程的两个根为0或3i.基础智能检测1.Cz=-4-3i,所以|z|=5.2.D+(1+2i)2=+4i-3=5i-2.3.1-iz=1-i.4.解:原式=+(-i)2014=-i-1.全新视角拓展D先由共轭复数的条件求出a,b的值,再求(a+bi)2的值.由题意知a-i=2-bi,a=2,b=1,(a+bi)2=(2+i)2=3+4i.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3