1、课题: 3.4 基本不等式 班级: 组名: 姓名: 设计人:赵帅军 审核人:魏帅举 领导审批: 一:自主学习,明确目标1知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题2过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。教学重点:基本不等式的应用教学难点:利用基本不等式求最大值、最小值。教学方法:探究,讨论二研讨互动,问题生成1重要不等式:2.算术平均数、几何平均数.?成立的条件?三合作探究,问题解决例1(1)用篱笆围成一个面积为100m的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少
2、?(2)段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?归纳:用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.练习1.已知x0,当x取什么值时,x2的值最小?最小值是多少?自我评价 同伴评价 小组长评价