1、练典型习题提数学素养一、选择题1(一题多解)(2019河北省九校第二次联考)函数yx2ln x的单调递减区间是()A(3,1)B(0,1)C(1,3) D(0,3)解析:选B.法一:令y10,得3x0,故所求函数的单调递减区间为(0,1)故选B.法二:由题意知x0,故排除A、C选项;又f(1)40或x0,f(x)是增函数;当2x0时,f(x)2,所以m2.故选C.5如果函数yf(x)的导函数的图象如图所示,给出下列判断:函数yf(x)在区间内单调递增;函数yf(x)在区间内单调递减;函数yf(x)在区间(4,5)内单调递增;当x2时,函数yf(x)有极小值;当x时,函数yf(x)有极大值则上述
2、判断中正确的是()ABC D解析:选D.当x(3,2)时,f(x)0,f(x)单调递增,当x(2,3)时,f(x)0,f(x)单调递减,错;当x2时,函数yf(x)有极大值,错;当x时,函数yf(x)无极值,错故选D.6(2019郑州市第二次质量预测)函数f(x)是定义在(0,)上的可导函数,f(x)为其导函数,若xf(x)f(x)ex(x2)且f(3)0,则不等式f(x)0的解集为()A(0,2) B(0,3)C(2,3) D(3,)解析:选B.令g(x)xf(x),x(0,),则g(x)xf(x)f(x)ex(x2),可知当x(0,2)时,g(x)xf(x)是减函数,当x(2,)时,g(x
3、)xf(x)是增函数又f(3)0,所以g(3)3f(3)0.在(0,)上,不等式f(x)0的解集就是xf(x)0的解集,又g(0)0,所以f(x)0),令f(x)0,得x1或x1(舍去),又当0x0;当x1时,f(x)0;当x(2,ln 2)时,f(x)1时,f(x)0;(2)讨论g(x)的单调性;解:(1)证明:f(x),令s(x)ex1x,则s(x)ex11,当x1时,s(x)0 ,所以s(x)在(1,)上单调递增,又s(1)0,所以s(x)0,从而当x1时,f(x)0.(2)g(x)2ax(x0),当a0时,g(x)0时,由g(x)0得x .当x时,g(x)0,g(x)单调递增12已知常
4、数a0,f(x)aln x2x.(1)当a4时,求f(x)的极值;(2)当f(x)的最小值不小于a时,求实数a的取值范围解:(1)由已知得f(x)的定义域为(0,),f(x)2.当a4时,f(x).所以当0x2时,f(x)2时,f(x)0,即f(x)单调递增所以f(x)只有极小值,且在x2时,f(x)取得极小值f(2)44ln 2.所以当a4时,f(x)只有极小值44ln 2,无极大值(2)因为f(x),所以当a0,x(0,)时,f(x)0,即f(x)在x(0,)上单调递增,没有最小值;当a0得,x,所以f(x)在上单调递增;由f(x)0得,x,所以f(x)在上单调递减所以当a0时,f(x)的最小值为极小值,即falna.根据题意得falnaa,即aln(a)ln 20.因为a0,所以ln(a)ln 20,解得a2,综上,实数a的取值范围是2,0)