1、知识要点1一元二次方程与二次函数之间的关系判别式一元二次方程ax2bxc0抛物线yax2bxcb24ac0有两个_的实数根.抛物线与x轴有_个交点.不相等两判别式一元二次方程ax2bxc0抛物线yax2bxcb24ac0有两个_的实数根.抛物线与x轴有且只有_个交点.b24ac0_实数根.抛物线与x轴_交点.相等一没有没有知识要点2二次函数与不等式的关系抛物线yax2bxc在x轴上方的点_都为正,所对应的x的所有值就是不等式ax2bxc0的解集;抛物线yax2bxc在x轴下方的点的_都为负,所对应的x的所有值就是不等式ax2bxc0的解集纵坐标纵坐标CB1习题链接提示:点击进入习题快速对答案快
2、速对答案32x12,x2356C 4D 详细答案点击题序7m41已知抛物线yx2x1与x轴的一个交点的坐标为(m,0),则代数式m2m2016的值为 (C)A2015 B2016C2017 D20102若抛物线yax2bxc的部分图象如图所示,则关于x的方程ax2bxc0的另一个解为(B)Ax2Bx1Cx0Dx13抛物线yx22x3与x轴的交点个数是 (C)A0个 B1个 C2个 D3个4二次函数yax2bxc(a0)的图象如图所示,则函数值y0时,x的取值范围是(D)Ax3C1x3Dx35已知抛物线yax2bxc与x轴交于A(2,0)、B(3,0)两点,那么方程ax2bxc0的根是_6若二次函数yx24xm的图象与x轴有两个交点,则m的取值范围是_x12,x23m47已知二次函数yx22mxm23(m是常数)(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(1)证明:b24ac(2m)24(m23)4m24m212120.不论m为何值,该函数的图象与x轴没有公共点(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?(2)解:二次函数yx22mxm23的图象的顶点坐标为(m,3),故该函数的图象沿y轴向下平移3个单位长度后,得到的图象与x轴只有一个公共点(m,0)