1、1.1回归分析的基本思想及其初步应用第2课时10 20 30 40 50500450400350300 图中各点,大致分布在某条直线附近。利用刚刚的方法求出其回归方程xy施化肥量水稻产量施化肥量x 15 20 25 30 35 40 45水稻产量y 330 345 365 405 445 450 455散点图2102795i1234567合计xi15202530354045yi330345365405445450455X平均值=30,Y平均值=399.285-69.285-54.285-34.285 5.715 45.715 50.715 55.7151039.275 542.85 171.4
2、25 0 228.575 501.15 835.7253319 225 100 25 0 25 100 225 700 -15 -10 -5 0 5 10 15解:根据题意最小二乘法估计就是未知参数a和b的最好估计,于是有所以回归方程是例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。根据最小二乘法估计 和 就是未知参数a和b的最好估计,于是有b=所以回归方程是所以
3、,对于身高为172cm的女大学生,由回归方程可以预报其体重为探究P3:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回
4、归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考P3产生随机误差项e的原因是什么?思考P3产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、其它因素的影响:影响身高 y 的因素不只是体重 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。函数模型与回归模型之间的差别函数模型:回归模型:可以提供选择模型的准则函数模型
5、与回归模型之间的差别函数模型:回归模型:线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析(释)变量,因变量y称为预报变量。求出线性相关方程后,如何描述斜率估计值与变化增量值之间相关关系的强弱?通过什么量来说明?1.用相关系数 r 来衡量2.公式:3.性质:、当时,x与y为完全线性相关,它们之间存在确定的函数关系。、当时,表示x与y存在着一定的线性相关,r的绝对值越大,越接近于1,表示x与y直线相关程度越高,反之越低。如何描述两个变量之间线性相关关系的强弱?在数学3中,我们学习了用相关
6、系数r来衡量两个变量之间线性相关关系的方法。相关系数r相关关系的测度(相关系数取值及其意义)-1.0+1.00-0.5+0.5完全负相关完全负相关无线性相关无线性相关完全正相关完全正相关负相关程度增加负相关程度增加r正相关程度增加正相关程度增加对回归模型进行统计检验 假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,即8个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号54.
7、5kg在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值受解析变量(身高)或随机误差的影响。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析变量和随机误差的组合效应。编号为3的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析变量(身高)和随机误差共同把这名学生的体重从50k
8、g“推”到了54.5kg,相差-4.5kg,这时解析变量和随机误差的组合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用表示总的效应,称为总偏差平方和。在例1中,总偏差平方和为354。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全
9、落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了。在例1中,残差平方和约为128.361。因此,数据点和它在回归直线上相应位置的差异是随机误差的效应,称为残差。例如,编号为6的女大学生,计算随机误差的效应(残差)为:对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号称为残差平方和,它代表了随机误差的效应。表示为:由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为128.361,所以解析变量的效应为解析变量和随机误差的总效应(总偏差平方和)=解析变量的效应(回归平方和)+随机误差的效应(残差平方和)354-12
10、8.361=225.639这个值称为回归平方和。我们可以用相关指数R2来刻画回归的效果,其计算公式是离差平方和的分解(三个平方和的意义)1.总偏差平方和(SST)反映因变量的 n 个观察值与其均值的总离差2.回归平方和(SSR)反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和3.残差平方和(SSE)反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和样本决定系数(判定系数 r2)1.回归平方和占总离差平方和的比例2.反映回归直线的拟合程度3.取值范围在 0,1 之间4.r2 1
11、,说明回归方程拟合的越好;r20,说明回归方程拟合的越差5.判定系数等于相关系数的平方,即r2(r)2我们可以用相关指数R2来刻画回归的效果,其计算公式是显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。总的来说:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。我们可
12、以用相关指数R2来刻画回归的效果,其计算公式是1354总计0.36128.361残差变量0.64225.639随机误差比例平方和来源表1-3从表3-1中可以看出,解析变量对总效应约贡献了64%,即R2 为0.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面
13、的分析工作称为残差分析。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题几点说明:第一个样本点和第6个样本点的残
14、差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。小结用身高预报体重时,需要注意下列问题:1、回归方程只适用于我们所研究的样本的总体;2、我们所建立的回归方程一般都有时间性;3、样本采集的范围会影响回归方程的适用范围;4、不能期望回归方程得到的预报值就是预报变量的精确值。事实上,它是预报变量的可能取值的平均值。这些问题也使用于其他问题。涉及到统计的
15、一些思想:模型适用的总体;模型的时间性;样本的取值范围对模型的影响;模型预报结果的正确理解。一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。什么是回归分析?(内容)1.
16、从从一一组组样样本本数数据据出出发发,确确定定变变量量之之间间的的数数学学关关系式系式2.对对这这些些关关系系式式的的可可信信程程度度进进行行各各种种统统计计检检验验,并并从从影影响响某某一一特特定定变变量量的的诸诸多多变变量量中中找找出出哪哪些些变量的影响显著,哪些不显著变量的影响显著,哪些不显著3.利利用用所所求求的的关关系系式式,根根据据一一个个或或几几个个变变量量的的取取值值来来预预测测或或控控制制另另一一个个特特定定变变量量的的取取值值,并并给给出这种预测或控制的精确程度出这种预测或控制的精确程度回归分析与相关分析的区别1.1.相相关关分分析析中中,变变量量 xx 变变量量 y y
17、处处于于平平等等的的地地位位;回回归归分分析析中中,变变量量 y y 称称为为因因变变量量,处处在在被被解解释释的的地地位位,x x 称为自变量,用于预测因变量的变化称为自变量,用于预测因变量的变化2.2.相相关关分分析析中中所所涉涉及及的的变变量量 x x 和和 y y 都都是是随随机机变变量量;回回归归分分析析中中,因因变变量量 y y 是是随随机机变变量量,自自变变量量 xx 可可以以是是随机变量,也可以是非随机的确定变量随机变量,也可以是非随机的确定变量3.3.相相关关分分析析主主要要是是描描述述两两个个变变量量之之间间线线性性关关系系的的密密切切程程度度;回回归归分分析析不不仅仅可可以以揭揭示示变变量量 x x 对对变变量量 y y 的的影影响大小,还可以由回归方程进行预测和控制响大小,还可以由回归方程进行预测和控制
Copyright@ 2020-2024 m.ketangku.com网站版权所有