ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:404.50KB ,
资源ID:49395      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-49395-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2005高考专题分类讨论思想.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2005高考专题分类讨论思想.doc

1、高中数学解题思想(二) 分类讨论思想 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。引起分类讨论的原因主要是以下几个方面: 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a0、a0、a2时分a0、a0和a0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位

2、置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。、再现性题组:1集合Ax|x|4,xR,Bx|x3|a,xR,若AB,那么a的范围是_。A. 0a1 B. a1 C. a1

3、D. 0a0且a1,plog(aa1),qlog(aa1),则p、q的大小关系是_。A. pq B. pq D.当a1时,pq;当0a1时,p0、a0、a1、0a1两种情况讨论,选C;3小题:分x在第一、二、三、四象限等四种情况,答案4,-2,0;4小题:分、0、0、x0两种情况,选B;6小题:分侧面矩形长、宽分别为2和4、或4和2两种情况,选D;7小题:分截距等于零、不等于零两种情况,选C。、示范性题组:例1. 设0x0且a1,比较|log(1x)|与|log(1x)|的大小。【分析】 比较对数大小,运用对数函数的单调性,而单调性与底数a有关,所以对底数a分两类情况进行讨论。【解】 0x1

4、01x1 当0a0,log(1x)0; 当a1时,log(1x)0,所以|log(1x)|log(1x)|log(1x) log(1x)log(1x)0;由、可知,|log(1x)|log(1x)|。【注】本题要求对对数函数ylogx的单调性的两种情况十分熟悉,即当a1时其是增函数,当0a1时其是减函数。去绝对值时要判别符号,用到了函数的单调性;最后差值的符号判断,也用到函数的单调性。例2. 已知集合A和集合B各含有12个元素,AB含有4个元素,试求同时满足下面两个条件的集合C的个数: . CAB且C中含有3个元素; . CA 。【分析】 由已知并结合集合的概念,C中的元素分两类:属于A 元素

5、;不属于A而属于B的元素。并由含A中元素的个数1、2、3,而将取法分三种。【解】 CCCCCC1084【注】本题是排列组合中“包含与排除”的基本问题,正确地解题的前提是合理科学的分类,达到分类完整及每类互斥的要求,还有一个关键是要确定C中元素如何取法。另一种解题思路是直接使用“排除法”,即CC1084。例3. 设a是由正数组成的等比数列,S是前n项和。 . 证明: 0,使得lg(Sc)成立?并证明结论。 【分析】 要证的不等式和讨论的等式可以进行等价变形;再应用比较法而求解。其中在应用等比数列前n项和的公式时,由于公式的要求,分q1和q1两种情况。【解】 设a的公比q,则a0,q0 当q1时,

6、Sna,从而SSSna(n2)a(n1)aa0; 当q1时,S,从而SSSaq0;由上可得SSS,所以lg(SS)lg(S),即lgS。. 要使lg(Sc)成立,则必有(Sc)(Sc)(Sc),分两种情况讨论如下:当q1时,Sna,则(Sc)(Sc)(Sc)(nac)(n2)ac(n1)aca0当q1时,S,则(Sc)(Sc)(Sc)c ccaqac(1q) aq0 ac(1q)0即c而ScS0, 使得lg(Sc)成立。【注】 本例由所用公式的适用范围而导致分类讨论。该题文科考生改问题为:证明logS ,和理科第一问类似,只是所利用的是底数是0.5时,对数函数为单调递减。例1、例2、例3属于涉

7、及到数学概念、定理、公式、运算性质、法则等是分类讨论的问题或者分类给出的,我们解决时按要求进行分类,即题型为概念、性质型。例4. 设函数f(x)ax2x2,对于满足1x0,求实数a的取值范围。 1 4 x 1 4 x【分析】 含参数的一元二次函数在有界区间上的最大值、最小值等值域问题,需要先对开口方向讨论,再对其抛物线对称轴的位置与闭区间的关系进行分类讨论,最后综合得解。【解】当a0时,f(x)a(x)2 或或 a1或a;当a 。【注】本题分两级讨论,先对决定开口方向的二次项系数a分a0、a0时将对称轴与闭区间的关系分三种,即在闭区间左边、右边、中间。本题的解答,关键是分析符合条件的二次函数的

8、图像,也可以看成是“数形结合法”的运用。例5. 解不等式0 (a为常数,a)【分析】 含参数的不等式,参数a决定了2a1的符号和两根4a、6a的大小,故对参数a分四种情况a0、a0、a0、a0时,a; 4a0 。 所以分以下四种情况讨论:当a0时,(x4a)(x6a)0,解得:x6a;当a0时,x0,解得:x0;当a0,解得: x4a;当a时,(x4a)(x6a)0,解得: 6ax0时,x6a;当a0时,x0;当a0时,x4a;当a时,6ax0), y2ya 解得:y1 (0a1)由上可得,z(1)或(1)【注】本题用标准解法(设zxy再代入原式得到一个方程组,再解方程组)过程十分繁难,而挖掘

9、隐含,对z分两类讨论则简化了数学问题。【另解】 设zxy,代入得 xy22xya; 当y0时,x2|x|a,解得x(1),所以z(1);当x0时,y2|y|a,解得y(1),所以(1)。由上可得,z(1)或(1)【注】此题属于复数问题的标准解法,即设代数形式求解。其中抓住2xy0而分x0和y0两种情况进行讨论求解。实际上,每种情况中绝对值方程的求解,也渗透了分类讨论思想。例7. 在xoy平面上给定曲线y2x,设点A(a,0),aR,曲线上的点到点A的距离的最小值为f(a),求f(a)的函数表达式。 (本题难度0.40)【分析】 求两点间距离的最小值问题,先用公式建立目标函数,转化为二次函数在约

10、束条件x0下的最小值问题,而引起对参数a的取值讨论。【解】 设M(x,y)为曲线y2x上任意一点,则|MA|(xa)y(xa)2xx2(a1)xax(a1)(2a1)由于y2x限定x0,所以分以下情况讨论:当a10时,xa1取最小值,即|MA2a1;当a10时,x0取最小值,即|MAa;综上所述,有f(a) 。【注】本题解题的基本思路是先建立目标函数。求二次函数的最大值和最小值问题我们十分熟悉,但含参数a,以及还有隐含条件x0的限制,所以要从中找出正确的分类标准,从而得到df(a)的函数表达式。、巩固性题组:1. 若loglog(xa) (a0且a1)11.设首项为1,公比为q (q0)的等比数列的前n项和为S,又设T,求T 。12. 若复数z、z、z在复平面上所对应三点A、B、C组成直角三角形,且|z|2,求z 。13. 有卡片9张,将0、1、2、8这9个数字分别写在每张卡片上。现从中任取3张排成三位数,若6可以当作9用,问可组成多少个不同的三位数。14. 函数f(x)(|m|1)x2(m1)x1的图像与x轴只有一个公共点,求参数m的值及交点坐标。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3