1、一、教学目标:1、知识目标:理解随机变量的意义;学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;理解随机变量所表示试验结果的含义,并恰当地定义随机变量。2、能力目标:发展抽象、概括能力,提高实际解决问题的能力。3、情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.二、教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义三、教学方法:讨论交流,探析归纳四、教学过程(一)、复习知识:1随机事件及其概率:在每次试验的结果中,如果某事件一定发生,则称为必然事件,记为U;相反,如果某事件一定不发生,则称为不可能事件,记为.随
2、机试验:为了研究随机现象的统计规律性,我们把各种科学实验和对事物的观测统称为试验如果试验具有下述特点:(1)试验可以在相同条件下重复进行;(2)每次试验的所有可能结果都是明确可知的,并且不止一个;(3)每次试验之前不能预知将会出现哪一个结果,则称这种试验为随机试验简称试验。2样本空间:样本点:在相同的条件下重复地进行试验,虽然每次试验的结果中所有可能发生的事件是可以明确知道的,并且其中必有且仅有一个事件发生,但是在试验之前却无法预知究意哪一个事件将在试验的结果中发生.试验的结果中每一个可能发生的事件叫做试验的样本点,通常用字母表示.样本空间: 试验的所有样本点1,2,3,构成的集合叫做样本空间
3、,通常用字母表示,于是,我们有 =1,2,3, 3.古典概型的特征:古典概型的随机试验具有下面两个特征:() 有限性.只有有限多个不同的基本事件;() 等可能性.每个基本事件出现的可能性相等.概率的古典定义 在古典概型中,如果基本事件的总数为n,事件所包含的基本事件个数为( ),则定义事件的概率 为 .即(二)、探析新课:1、随机变量的概念:随机变量是概率论的重要概念,把随机试验的结果数量化可使我们对随机试验有更清晰的了解,还可借助更多的数学知识对其进行深入研究有的试验结果本身已具数值意义,如产品抽样检查时的废品数,而有些虽本无数值意义但可用某种方式与数值联系,如抛硬币时规定出现徽花时用1表示
4、,出现字时用0表示这些数值因试验结果的不确定而带有随机性,因此也就称为随机变量2、随机变量的定义:如果对于试验的样本空间 中的每一个样本点 ,变量 都有一个确定的实数值与之对应,则变量 是样本点 的实函数,记作 我们称这样的变量 为随机变量3、若随机变量 只能取有限个数值 或可列无穷多个数值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个数值的情形(三)、例题探析例1、已知在10件产品中有2件不合格品。现从这10件产品中任取3件,这是一个随机现象。(1)写出该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。例3、写出下列随机变量可能取的值,并说明随机变量所取的值表示
5、的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数;(2)某单位的某部电话在单位时间内收到的呼叫次数例4、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为,试问:“ 4”表示的试验结果是什么?(四)、课堂小结:本课学习了离散型随机变量。理解随机变量的意义;学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;理解随机变量所表示试验结果的含义,并恰当地定义随机变量。(五)、课堂练习:1下列变量中,不是随机变量的是()A一射击手射击一次命中的环数B标准状态下,水沸腾时的温度C抛掷两枚骰子,所得点数之和D某电话总机在时间区间(0,T)内收到的呼叫次数来源2下列所述:某座大桥一天经过的车辆数X;某无线电寻呼台一天内收到寻呼次数X;一天之内的温度X;一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分其中X是离散型随机变量的是()A B C D