1、v1、理解并掌握弧度制的定义,v2、能进行角度与弧度之间的换算。v3、能用弧度制解决简单的问题 1、角度制的定义 规定周角的1/360为1度的角这种用度做单位来度量角的制度叫角度制。12、弧长公式及扇形面积公式nR180l=nR2360S=nRl1、弧度制我们把等于半径长的圆弧所对的圆心角叫做1弧度的角。设弧AB的长为l,若l=r,则AOB=1 弧度lr=OBrl=rA1弧度讲授新课则AOB=2 弧度lr=则AOB=2弧度lr=rOABl=2r2弧度l=2 rOA(B)r若l=2r,若l=2 r,2弧度若圆心角AOB表示一个负角,且它所对的弧的长为3r,则AOB的弧度数的绝对值是lr=3,即A
2、OB=lr=3弧度l=3rOABr-3弧度由弧度的定义可知:圆心角AOB的弧度数的绝对值等于它所对的弧的长与半径长的比。定义的合理性1弧度Rl=ROAB1弧度rl=rOAB与半径长无关的一个比值一般地,我们规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,任一已知角的弧度数的绝对值:=lr其中l为以角作为圆心角时所对圆弧的长,r为圆的半径。这种用“弧度”做单位来度量角的制度叫做弧度制。2、弧度与角度的换算lr=则AOB=2弧度此角为周角即为360360=2 弧度180=弧度l=2 rOA(B)r若l=2 r,由180=弧度 还可得1=弧度 001745弧度1801弧度=()573
3、0=57181803、例题例1.把下列各角化成弧度(1)67 30 (2)120 (3)75 (4)135 (5)300 (6)-210 例2:把下列各弧度化成度.(1)(2)(3)(4)(1)108o(2)15o(3)-144o(4)-150o注:1、对于一些特殊角的度数与弧度数之间的换算要熟记。度030 45 60 90 180 270360弧度0 2 6 2 43322、用弧度为单位表示角的大小时,“弧度”二字通常省略不写,但用“度”()为单位不能省。3、用弧度为单位表示角时,通常写成“多少”的形式。例3、把下列各角化成 的形式:(1);(2);(3)(1):(3):(2):4、圆的弧长
4、公式及扇形面积公式Olrl =r由=lr得S =l r12=r2124、用弧度来度量角,实际上角的集合与实数集R之间建立一一对应的关系:实数集R角的集合正角零角负角正实数零负实数对应角的弧度数练习、下列角的终边相同的是()A与与与与BC DB练习xy0(1)xy0(2)练习小结:1、量角的制度:角度制与弧度制弧度制除了使角与实数有一一对应关系外,为以后学习三角函数打下基础。2、能熟练地进行角度与弧度之间的换算。3、弧长公式:扇形面积公式:(其中 为圆心角 所对的弧长,为圆心角的弧度数)例3写出满足下列条件的角的集合(用弧度制):1、终边与X轴正半轴重合;2、终边与X轴负半轴重合;3、终边与X轴重合;4、终边与Y轴正半轴重合;5、终边与Y轴负半轴重合;6、终边与Y轴重合;7、第一象限内的角;8、第二象限内的角;9、第三象限内的角;10、第四象限内的角;