ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:1.20MB ,
资源ID:485044      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-485044-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京市丰台区2020届高三下学期一模考试数学试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

北京市丰台区2020届高三下学期一模考试数学试题 WORD版含答案.doc

1、丰台区20192020学年度第二学期综合练习(一) 高三数学 2020.04第一部分 (选择题 共40分) 一、选择题共10小题,每小题4分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1若集合,则(A)(B)(C)(D)2 已知向量,满足,则 (A)(B)(C)(D)3 若复数满足,则对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限4 圆的圆心到直线的距离为(A)(B)(C)(D)5 已知,则(A)(B)(C)(D) 6 “”是“”成立的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件7某三棱锥的三视图如图所示,则该三棱

2、锥的四个面中,面积等于的有(A)1个(B)2个(C)3个(D)4个8. 过抛物线的焦点作倾斜角为60的直线与抛物线交于两个不同的点(点在轴上方),则的值为(A)(B)(C)(D)9. 将函数的图象向左平移个单位长度后得到函数的图象,且,下列说法错误的是(A)为偶函数(B)(C)当时,在上有3个零点(D)若在上单调递减,则的最大值为910. 已知函数 若存在非零实数,使得成立,则实数的取值范围是(A)(B)(C)(D) 第二部分 (非选择题 共110分)二、填空题共5小题,每小题5分,共25分11. 设数列的前项和为, ,则 12. 若,则函数的最小值为 ,此时 13. 已知平面和三条不同的直线

3、.给出下列六个论断:;.以其中两个论断作为条件,使得成立.这两个论断可以是 (填上你认为正确的一组序号)14 如果对某对象连续实施两次变换后的结果就是变换前的对象,那么我们称这种变换为“回归”变换.如:对任意一个实数,变换:取其相反数.因为相反数的相反数是它本身,所以变换“取实数的相反数”是一种“回归”变换. 有下列3种变换: 对,变换:求集合的补集; 对任意,变换:求的共轭复数; 对任意,变换:(均为非零实数).其中是“回归”变换的是 . 注:本题给出的结论中,有多个符合题目要求.全部选对得5分,不选或有错选得0分,其他得3分.15 已知双曲线的渐近线是边长为1的菱形的边所在直线若椭圆经过两

4、点,且点是椭圆的一个焦点,则 .三、解答题共6小题,共85分解答应写出文字说明,演算步骤或证明过程16.(本小题共14分)在中,角,所对的边分别为,.已知,.()当时,求;()求的取值范围.17.(本小题共14分)如图,在四棱锥中,平面平面. ()求证:平面; ()求证:平面;()在棱上是否存在一点,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由18.(本小题共14分)在抗击新冠肺炎疫情期间,很多人积极参与了疫情防控的志愿者活动.各社区志愿者服务类型有:现场值班值守,社区消毒,远程教育宣传,心理咨询(每个志愿者仅参与一类服务).参与A,B,C三个社区的志愿者服务情况如下表:社区社区

5、服务总人数服务类型现场值班值守社区消毒远程教育宣传心理咨询A10030302020B12040352025C15050403030()从上表三个社区的志愿者中任取1人,求此人来自于A社区,并且参与社区消毒工作的概率;()从上表三个社区的志愿者中各任取1人调查情况,以X表示负责现场值班值守的人数,求X的分布列;()已知A社区心理咨询满意率为0.85,B社区心理咨询满意率为0.95,C社区心理咨询满意率为0.9,“,”分别表示A,B,C社区的人们对心理咨询满意,“,”分别表示A,B,C社区的人们对心理咨询不满意,写出方差,的大小关系.(只需写出结论)19.(本小题共15分)已知函数.()若曲线在点

6、处的切线斜率为1,求实数的值;()当时,求证:;()若函数在区间上存在极值点,求实数的取值范围.20.(本小题共14分)已知椭圆的离心率为,点在椭圆上,直线与椭圆交于不同的两点.()求椭圆的方程;()直线,分别交轴于两点,问:轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.21.(本小题共14分) 已知有穷数列:且.定义数列的“伴生数列”:,其中,规定.()写出下列数列的“伴生数列”: 1,2,3,4,5; 1,1,1,1,1.()已知数列的“伴生数列”:,且满足.(i)若数列中存在相邻两项为1,求证:数列中的每一项均为1;()求数列所有项的和.(考生务必将答案答在答题卡上,

7、在试卷上作答无效)丰台区20192020学年度第二学期综合练习(一)高三数学 参考答案及评分参考 202004一、选择题共10小题,每小题4分,共40分题号12345678910答案CDBBCACDDA二、填空题共5小题,每小题5分,共25分1125 123 ;2 13(或) 14. 15. 三、解答题共6小题,共85分解答应写出文字说明,演算步骤或证明过程 16.(本小题共14分)解:() 由余弦定理,得. 所以. 6分() 由可知,即. . 因为,所以. 故.因此.于是. 14分17.(本小题共14分)证明:()因为, 平面, 平面, 所以平面. 3分 ()取的中点,连接. 在直角梯形中,

8、易知,且.在中,由勾股定理得.在中,由勾股定理逆定理可知.又因为平面平面, 且平面平面,所以平面. 7分()取的中点,连接,.所以,因为平面,所以平面.因为,所以.如图建立空间直角坐标系,则,.易知平面的一个法向量为.假设在棱上存在一点,使得二面角的大小为.不妨设, 所以, 设为平面的一个法向量,则 即令,所以. 从而. 解得或.因为,所以.由题知二面角为锐二面角.所以在棱上存在一点,使得二面角的大小为,此时. 14分18(本小题共14分)解:()记“从上表三个社区的志愿者中任取1人,此人来自于A社区,并且参与社区消毒工作”为事件 , .所以从上表三个社区的志愿者中任取1人,此人来自于A社区,

9、并且参与社区消毒工作的概率为. 4分()从上表三个社区的志愿者中各任取1人,由表可知:A,B,C三个社区负责现场值班值守的概率分别为.X的所有可能取值为0,1,2,3. ,.X的分布列为: X0123P11分() 14分 19.(本小题共15分)解:()因为, 所以.由题知,解得. 4分()当时, 所以. 当时,在区间上单调递减;当时,在区间上单调递增;所以是在区间上的最小值.所以. 8分()由()知,. 若,则当时,在区间上单调递增,此时无极值. 若,令,则.因为当时,所以在上单调递增.因为, 而,所以存在,使得.和的情况如下:因此,当时,有极小值.综上,的取值范围是. 15分 20(本小题

10、共14分)解:()由题意 解得. 所以椭圆的方程为. 5分 () 假设存在点使得.设, 因为, 所以.则. 即,所以. 因为直线交椭圆于两点,则两点关于轴对称. 设, 因为,则直线的方程为:.令,得. 直线的方程为:.令,得.因为,所以.又因为点在椭圆上,所以.所以.即.所以存在点使得成立. 14分 21(本小题共14分)解: () 1,1,1,1,1; 1,0,0,0,1. 4分 ()(i)由题意,存在,使得. 若,即时,.于是.所以,所以.即.依次类推可得.所以.若,由得.于是.所以.依次类推可得.所以.综上可知,数列中的每一项均为1. 8分()首先证明不可能存在使得.若存在使得,则.又得与已知矛盾.所以不可能存在,.由此及()得数列的前三项的可能情况如下:(1)时,由(i)可得.于是.所以所有项的和.(2)时,此时与已知矛盾. (3) 时,.于是.故于是,于是,且.依次类推且恰是3的倍数满足题意.所以所有项的和 .同理可得及时,当且仅当恰是3的倍数时,满足题意. 此时所有项的和 . 综上,所有项的和或(是3的倍数). 14分(若用其他方法解题,请酌情给分)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3