1、转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题。从某种意义上说,数学题的求解都是应用已知条件对问题进行一连串恰当转化,进而达到解题目的的一个探索过程。转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题的转化等各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所
2、有的数学教学内容和解题过程中1.转化有等价转化与非等价转化等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口2转化与化归的原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟悉的知识、经验来解决(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有
3、利于运用某种数学方法或其方法符合人们的思维规律; (4)直观化原则:将比较抽象的问题化为比较直观的问题来解决(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解3 常见的转化与化归的方法:转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转
4、化为易于解决的基本问题(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径(8)类比法:运用类比推理,猜测问题的结论,易于确定(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A,而把包
5、含该问题的整体问题的结果类比为全集U,通过解决全集U及补集UA获得原问题的解决,体现了正难则反的原则4 转化与化归的指导思想:(1)把什么问题进行转化,即化归对象(2)化归到何处去,即化归目标(3)如何进行化归,即化归方法化归与转化思想是一切数学思想方法的核心.【热点分类突破】类型一特殊与一般的转化例1【河北省衡水中学2016届高三上学期一调考试】设是奇函数,对任意的实数,有,且当时,则在区间上( )A有最小值 B有最大值C有最大值 D有最小值分析:此题可根据题意,构造一个特殊函数,即可得出答案。【答案】B点评:一般满足的,特殊也满足,可构造一个特殊函数,通过特殊函数求解【规律总结】一般问题特
6、殊化,使问题处理变得直接、简单特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批的处理问题的效果【举一反三】【江西省南昌市第二中学2016届高三上学期第四次考试】函数的图象大致是( )ABCD【答案】A类型二相等与不等的转化例【河北省冀州市中学2016届高三上学期一轮复习检测一】已知函数,设为实数,若存在实数,使,则实数的取值范围为( )A、 B、 C、 D、分析:此题可根据,转化为函数的值域,利用值域建立不等式,即可得出答案。【答案】.【解析】因为,为实数,所以,因为,所以当时,的最小值为,因为函数,所以其值域为,因为存在实数,使,所以,即,故应选.点评:本题主要考查
7、了分段函数的图像与性质和函数与方程,考查了学生对数学问题的阅读分析转化能力,渗透着数形结合的数学思想,属中档题.其解题的一般思路为:首先根据函数的图像,求出其值域,然后利用已知条件并结合函数的图像可得满足已知条件时应满足的条件,进而由一元二次不等式的解法即可得出所求的结果.【规律总结】等与不等是数学解题中矛盾的两个方面,但是它们在一定的条件下可以相互转化,有时表面看来似乎只具有相等的数量关系,且根据这些相等关系很难解决,但是通过挖掘其中的不等量关系,转化为不等式(组)来求解,则显得非常简捷有效【举一反三】【2015高考天津】已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是( )(A
8、) (B) (C) (D)【答案】D类型三常量与变量的转化例【2016届江苏省常州一中、江阴南菁高中高三联考】已知函数(1)求函数在点处的切线方程;(2)求函数单调递增区间;(3)若存在,使得是自然对数的底数),求实数的取值范围分析:(1)由导数几何意义得:函数在点处的切线斜率为,又因为,所以函数在点处的切线方程为(2)利用导数求函数单调区间,先求函数导数,整理,讨论导函数符号:当时,;当时,;从而的单调增区间为(3)先去绝对值,即存在,使得等价于,由(2)讨论知的最小值,的最大值为和中的最大值这样本题关键为确定和大小:作差,研究单调性得当时, ;当时,最后利用函数单调性解不等式 (3)因为存
9、在,使得成立,而当时,所以只要即可 又因为,的变化情况如下表所示:减函数极小值增函数所以在上是减函数,在上是增函数,所以当时,的最小值,的最大值为和中的最大值因为,令,因为,所以在上是增函数而,故当时,即;当时,即 所以,当时,即,函数在上是增函数,解得;当时,即,函数在上是减函数,解得综上可知,所求的取值范围为 点评:本题(3)把不等式转化为关于的函数,利用函数的单调性来解决,合理利用常量与变量的转化,会事半功倍【规律总结】在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的【举一反三】【 2015届贵州省遵义
10、航天高级中学高三第三次模拟考试】已知函数的定义域的图象如图所示,若正数则的取值范围是( ) A. B. C. D.类型四正与反的相互转化例4设命题函数的定义域为;命题对一切的实数恒成立,如果命题“”为假命题,求实数的取值范围.分析:分别求出命题p,q成立的等价条件,利用p且q为假p,q至少有一个为假命题,故其反面为:p,q都为真命题;先求出p,q都为真命题时实数k的取值范围,再求其在实集上的补集就是所求实数k的取值范围点评:一些数学问题,如果从条件出发,正面考虑较难较繁,不妨调整思考方向,从问题的结论入手,或从问题的条件与结论的反面入手进行思考,迂回地得到解题思路,这叫做“正难则反”。“正难则
11、反”是一种重要的解题策略,灵活用之,能使许多难题、趣题和生活中的问题获得巧解。【规律总结】否定性命题,常要利用正反的相互转化,先从正面求解,再取正面答案的补集即可一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中【举一反三】【江西省七校2014届高三上学期3月联考】设函数。()若时,函数取得极值,求函数的图像在处的切线方程;()若函数在区间内不单调,求实数的取值范围。【方法技巧】1熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己
12、自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。2为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。3注意紧盯化归目标,保证化归的有效性、规范性化归作为一种思想方法,应包括化归的对象、化归的目标、以及化归的方法、途径三个要素。因此,化归思想方法的实施应有明确的对象、设计好目标、选择好方法,而设计目标是问题的关键。设计化归目标时,总是以课本中那些基础
13、知识、基本方法以及在应用上已形成固定的问题(通常称为规范性问题)为依据,而把要解决的问题化归为成规律问题(即问题的规范化)。化归能不能如期完成,与化归方法的选择有关,同时还要考虑到化归目标的设计与化归方法的可行性、有效性。因此,在解题过程中,必须始终紧紧盯住化归的目标,即应该始终考虑这样的问题:怎样才能达到解原问题的目的。在这个大前提下实施的化归才是卓有成效的,盲目地选择化归的方向与方法必将走入死胡同。4注意化归的等价性,确保逻辑上的正确化归包括等价化归和非等价化归,等价化归后的新问题与原问题实质是一样的,不等价化归则部分地改变了原对象的实质,需对所得结论进行必要的修正。高中数学中的化归大多要
14、求等价化归,等价化归要求转化过程中的前因后果既是充分的,又是必要的,以保证转化后的结果为原题的结果。如果在解题过程中没有注意化归的等价性,就会犯不合实际或偷换论题、偷换概念、以偏概全等错误。例如在解应用题时要注意原题中数量的实际意义,在经过数学变换后,应将所得的结果按实际意义检验;解方程或不等式时应注意变换的同解性是否仍然保持。数学思想方法的学习是一个潜移默化的过程,没有一个统一的模式可以遵循,而是在多方领悟、反复应用的基础上形成的,化归也不例外。学生在解题过程中,必须根据问题本身提供的信息,利用动态的思维,多方式、多途径、有计划、有步骤地反复渗透,要善于反思解题过程,倒摄解题思维,回味解题中所使用的思想,去寻求有利于问题解决的化归途径和方法。