ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.30MB ,
资源ID:483078      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-483078-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京市平谷区2021届高三数学一模试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

北京市平谷区2021届高三数学一模试题(含解析).doc

1、北京市平谷区2021届高三数学一模试题(含解析)第1卷选择题(共40分)一、选择题(本大题共10小題,每小题4分,共40分;在每个小题列出的四个选项中,选出符合题目要求的一项)1. 若集合,则等于( )A. B. C. D. 【答案】A【解析】【分析】直接利用交集的定义求解.【详解】因为,所以.故选:A2. 设复数满足,则等于( )A. B. C. D. 【答案】B【解析】【分析】根据复数除法运算法则运算求解即可【详解】由题知:.故选:B 3. 的展开式中的系数是( )A. 28B. 56C. 112D. 256【答案】C【解析】【分析】由二项展开式的通项公式可得【详解】.故选:C4. 一个几

2、何体的三视图如图所示,该几何体的表面积是( )A. B. C. D. 【答案】B【解析】【分析】由三视图得到几何体原图是一个圆柱即得解.【详解】由三视图可知几何体原图是一个底面半径为1高为3的圆柱,所以几何体的表面积为.故选:B【点睛】方法点睛:由三视图找几何体原图常用的方法有:(1)观察法;(2)模型法. 要根据已知条件灵活选择方法求解.5. 设是圆上的动点,是直线上的动点,则的最小值为( )A. 6B. 4C. 3D. 2【答案】A【解析】【分析】根据圆心到直线的距离减半径即可得答案.【详解】解:由题知圆的标准方程为:,故圆心为,半径为,圆心到直线的距离为,所以的最小值为.故选:A【点睛】

3、关键点点睛:本题解题的关键在于将问题转化为圆心到直线的距离与半径差的问题.6. 函数的图象与函数的图象的交点个数为( )A. 0B. 1C. 2D. 3【答案】C【解析】【分析】作出函数图像,数形结合即可得答案.【详解】解:由于函数图像是由函数图像向左平移个单位得到,进而函数在定义域内单调递增,且过定点,渐近线为,函数,故函数对称轴为,顶点坐标为,开口向上,所以作出图像如图,故图像有两个交点.故选:C【点睛】本题考查对数函数的图像,考查数形结合思想,解题的关键在于根据函数性质作出函数图像,是基础题.7. 已知函数则“是偶函数“是“”( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条

4、件D. 既不充分也不必要条件【答案】B【解析】【分析】利用必要不充分条件的概念,结合三角函数知识可得答案.【详解】若,则,所以为偶函数;若为偶函数,则,不一定等于.所以“是偶函数“是“”的必要不充分条件.故选:B【点睛】关键点点睛:掌握必要不充分条件的概念是解题关键.8. 已知分别是双曲线两个焦点,双曲线和圆的一个交点为,且,那么双曲线的离心率为( )A. B. C. 2D. 【答案】D【解析】【分析】由题知,计算得,由双曲线定义列出,计算可得离心率.【详解】由题知,又,且,则,由双曲线定义得,得故选:D9. 已知数列满足,且对任意,都有,那么为( )A. B. C. D. 10【答案】A【解

5、析】【分析】依次计算出的值.【详解】化简可得,则,.故选:A10. 某时钟的秒针端点到中心点的距离为5cm,秒针绕点匀速旋转,当时间:时,点与钟面上标12的点重合,当两点间的距离为(单位:cm),则等于( )A. B. C. D. 【答案】D【解析】【分析】由题知圆心角为,过O作AB的垂线,通过计算可得.【详解】由题知,圆心角为,过O作AB的垂线,则故选:D第II卷非选择题(共110分)二、填空題(本大题共5小题,每小题5分,共25分;请把答案填在答题卡中相应题中横线上)11. 函数的定义域是_【答案】【解析】【分析】根据偶次根式被开方数大于等于零,和对数的真数大于零即可求出答案【详解】解:由

6、题意得,解得,函数的定义域为,故答案为:12. 若抛物线 上一点M到焦点距离为3,则点M到y轴的距离为_【答案】2【解析】【详解】抛物线 上一点M到焦点的距离为3,则抛物线 上一点M到准线得距离为3,则点M到y轴的距离为 .13. 已知在直角三角形中,那么等于_;若是边上的高,点在内部或边界上运动,那么的最大值是_【答案】 (1). (2). 0【解析】【分析】利用向量数量积的运算求得.利用向量数量积的运算判断出的最大值.【详解】由于直角三角形中,所以,.由于,所以.,由于,所以的最大值是0故答案为:;14. 已知函数,在上单调递增,那么常数的一个取值_【答案】(答案不唯一)【解析】【分析】由

7、条件利用正弦函数的单调性可得,由此求得正数的范围,任取此范围内常数即可.【详解】在上单调递增,则,,取一个该范围内的值即可,如故答案为:.15. 从2008年京津城际铁路通车运营开始,高铁在过去儿年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色下图是2009年至2016年高铁运营总里程数的折线图(图中的数据均是每年12月31日的统计结果)根据上述信息,下列结论中正确的是2015年这一年,高铁运营里程数超过0.5万公里;2013年到2016高铁运营里程平均增长率大于2010到2013高铁运营里程平均增长率;从2010年至2016年,新增高铁运营里程数最多的一年是2014年;从2010年

8、至2016年,新增高铁运营里程数逐年递增;其中所有正确结论的序号是_【答案】【解析】【分析】根据统计折线图对各选项逐一作出判断即可.【详解】解析:对于,看2014年,2015年对应的纵坐标之差,小于,错误;对于,连线看斜率即可,2013年到2016两点连线斜率更大,正确;对于,看两点纵坐标之差哪组最大,正确;对于,看相邻纵坐标之差是否逐年增加,显然不是,有增有减,错误;综上,填故答案为:三、解答题(本大題共6小題,共85分解答应写出文字说明,证明过程或演算步骤)16. 如图,在四棱维中,底面是边长为2的正方形,为正三角形,且侧面底面,(1)求证:平面;(2)求二面角的余弦值【答案】(1)证明见

9、解析;(2)【解析】【分析】(1)根据三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)根据面面垂直的性质定理、正三角形的性质建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)证明:连接,与交于,在中,因为,分别为,的中点,所以因为平面ACM,平面,所以平面 (2)设E是AB的中点,连接,因为为正三角形,所以PEAB又因为面PAB底面ABCD,面底面,所以平面ABCD过作平行于与交于以为原点,分别以为轴,建立空间直角坐标系,则,所以,设平面的法向量为,则,令则得因为PE平面ABCD,所以平面ABCD的法向量,所以所以二面角的余弦值为.17. 在锐角中,角的对边分別为

10、,且(1)求角的大小;(2)再从下面条件、条件这两个条件中选择一个作为已知,求的面积条件;条件:注:如果选择条件和条件分别解答,按第一个解答计分【答案】(1);(2)答案不唯一,具体见解析【解析】【分析】(1)由正弦定理边角互化得,进而得,再结合锐角三角形即可得答案;(2)条件,结合(1)和余弦定理得,解方程得,进而根据三角形面积公式计算即可;条件,结合(1)与正弦定理得,再结合内角和定理和正弦的和角公式得,进而根据三角形的面积公式求解.【详解】解(1)因为,由正弦定理因为,所以因为,所以(2)条件:;因为,由(1)得,所以根据余弦定理得,化简整理为,解得所以的面积条件:由(1)知,根据正弦定

11、理得,所以因为,所以,所以的面积【点睛】本题考查正余弦定理解三角形,三角形的面积求解,考查运算求解能力,回归转化能力,是中档题.本题解题的关键在于利用正弦定理边角互化得,进而结合锐角三角形即可得;此外,第二问选择条件,需注意余弦定理方程思想的应用.18. 随着人民生活水平的提高,人们对牛奶品质要求越来越高,某牛奶企业针对生产的鲜奶和酸奶,在一地区进行了质量满意调查,现从消费者人群中随机抽取500人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人酸奶鲜奶酸奶鲜奶酸奶鲜奶满意100120120100150120不满意503030505080(1)从样本中任取1个人,求这个人恰好对生产的

12、酸奶质量满意的概率;(2)从该地区的老年人中抽取2人,青年人中随机选取1人,估计这三人中恰有2人对生产的鲜奶质量满意的概率;(3)依据表中三个年龄段的数据,你认为哪一个消费群体鲜奶的满意度提升0.1,使得整体对鲜奶的满意度提升最大?(直接写结果)【答案】(1);(2);(3)青年人【解析】【分析】(1)用频率估计概率,直接计算;(2)先分别求出老年人和青年人满意度的概率,然后对“抽取这三人中恰有2人对生产的鲜奶质量满意”分成一老年人、一青年人满意和两老年人满意讨论,进行计算即可;(3)直接判断出青年人.【详解】解:(1)设这个人恰好对生产的酸奶满意人数事件为A,总人次为500人,共抽取了100

13、+120+150=370人次对酸奶满意,所以(2)由频率估计概率,由已知抽取老年人满意度的概率为,抽取青年人满意度的概率为,抽取这三人中恰有2人对生产的鲜奶质量满意的概率,所以这三人中恰有2人对生产的鲜奶质量满意的概率为(3)青年人.【点睛】(1)实际问题中一般用频率估计概率;(2)等可能性事件的概率一般用列举法列举出基本事件,直接套公式求概率.19. 已知椭圆的离心率为,并且经过点(1)求椭圆的方程;(2)设过点的直线与轴交于点,与椭圆的另一个交点为,点关于轴的对称点为,直线交轴于点,求证:为定值【答案】(1);(2)证明见解析【解析】【分析】(1)由可得答案;(2)设直线的方程为,与椭圆方

14、程联立利用韦达定理可得点坐标,及直线的方程然后令得、,由可得答案.【详解】(1)由已知解得所以椭圆:(2)证明:由已知斜率存在以下给出证明:由题意,设直线的方程为,则,由得,所以, ,所以,即,直线的方程为,令得所以,令由得所以,所以=.【点睛】本题考查了椭圆的方程、直线和椭圆的位置关系,关键点是利用韦达定理表示出点坐标,考查了学生分析问题、解决问题的能力及计算能力.20. 已知函数(1)当时,求函数的单调区间;(2)当时,过点可作几条直线与曲线相切?请说明理由【答案】(1)的递减区间为;递增区间为;(2)只能作一条曲线的切线;答案见解析【解析】【分析】(1)当时,求得,结合导数的符号,即可求

15、解;(2)当时,求得函数导数,进而得出切线方程,根据切线过点,化简得到,构造新函数,求得函数的单调性,结合零点的存在定理,即可求解.【详解】(1)当时,可得,则,令,解得,则及的情况如下:00极大值所以函数的递减区间为;递增区间为(2)当时,所以设切点为,则切线方程为:,又因为切线过,所以,所以,化简得,令,所以,则及的情况如下:0+00+极大值极小值1所以函数的递减区间为;递增区间为,又由,所以在有唯一一个零点,所以方程有唯一一个解所以过只能作一条曲线的切线【点睛】解题技巧:利用导数的几何意义,求得切线方程,把过点可作几条直线与曲线相切,转化为新函数的有解问题,结合单调性和极值及零点的存在性

16、定理解答是解答的关键.21. 已知数列,具有性质P:对任意()与,两数中至少有一个是该数列中的一项,为数列的前项和(1)分别判断数列0,1,3,5与数列0,2,4,6是否具有性质P:(2)证明:且;(3)证明:当时,成等差数列【答案】(1)数列不具有性质;数列具有性质;(2)证明见解析;(3)证明见解析【解析】【分析】(1)利用数列新定义直接判断即可.(2)由定义知,证明,利用累加法即可证得结论.(3)由(2)可证得,利用定义知是数列A中的项,可知,即可证得数列是以0为首项,公差为的等差数列【详解】(1),所以数列不具有性质;,六组数中,至少有一个属于,所以数列具有性质(2)由数列具有性质,与中至少有一个属于A,又,故,由A具有性质可知,;上边n个式子累加得:,(3)证明:由(2)知,而不是数列A中的项,则是数列A中的项,所以数列是以0为首项,公差为的等差数列【点睛】关键点点睛:本题是一道新型的探索性问题,认真理解题目所给的数列新定义是解决问题的关键,通过解决探索性问题,培养学生综合运用数学思想方法分析问题与解决问题的能力,属于难题.- 17 -

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3