1、新题型专练(五)(25分钟50分)一、多选题(每小题5分,共25分,全部选对的得5分,选对但不全的得2分,有选错的得0分)1“今天南京的降雨概率是90%,广州的降雨概率是10%”,下列说法正确的是()A南京今天一定降雨,而广州一定不降雨B广州今天可能降雨,而南京可能没有降雨C今天南京和广州都可能没降雨D今天南京降雨的可能性比广州大【解析】选BCD.概率表示某个随机事件发生的可能性大小,因此BCD正确,A错误2从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论正确的是()A2个球都是红球的概率为B2个球不都是红球的概率为C至少有1个红球的概率为D2个球中恰有
2、1个红球的概率为【解析】选ACD.设“从甲袋中摸出一个红球”为事件A1,“从乙袋中摸出一个红球”为事件A2,则P(A1),P(A2),且A1,A2独立;在A中,2个球都是红球为A1A2,其概率为,A正确;在B中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为,B错误;在C中,2个球中至少有1个红球的概率为1P()P()1,C正确;2个球中恰有1个红球的概率为,D正确3不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A2张卡片都不是红色B2张卡片恰有一张红色C2张卡片至少有一张红色D2张卡片都为绿色【解析】选A
3、BD.6张卡片中一次取出2张卡片的所有情况有: “2张都为红色”、“2张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立“2张都不是红色”“2张恰有一张红色”“2张都为绿色”,其中“2张至少一张为红色”包含事件是“2张都为红色”二者并非互斥4中国篮球职业联赛(CBA)中,某篮球运动员在最近几次参加的比赛中的得分情况如表:投篮次数投中两分球的次数投中三分球的次数1005518记该运动员在一次投篮中,投中两分球为事件A,投中三分球为事件B,没投中为事件C,用频率估计概率的方法,得到的下述
4、结论中,正确的是()AP(A)0.55 BP(B)0.18CP(C)0.27 DP(BC)0.55【解析】选ABC.记该运动员在一次投篮中,投中两分球为事件A,投中三分球为事件B,没投中为事件C,由古典概型概率公式计算得P(A)0.55,故A正确;P(B)0.18,故B正确;P(C)1P(A)P(B)10.550.180.27,故C正确;P(BC)P(B)P(C)0.180.270.45,故D错误5甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以A1,A2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B表示从乙罐中取出的球是
5、红球的事件,下列命题正确的是()AP(B)B事件B与事件A1相互独立C事件B与事件A2相互独立DA1,A2互斥【解析】选AD.根据题意画出树状图,得到有关事件的样本点数因此P(A1),P(A2),P(B),A正确;又P(A1B),因此P(A1B)P(A1)P(B),B错误;同理,C错误;A1,A2不可能同时发生,故彼此互斥,故D正确二、双空题(每小题5分,共15分,其中第一空3分,第二空2分)6对飞机连续射击两次,每次发射一枚炮弹,设A两次都击中飞机,B两次都没有击中飞机,C恰有一次击中飞机,D至少有一次击中飞机其中彼此互斥的事件是_,互为对立事件的是_【解析】事件“两次都击中飞机”发生,则A
6、与D都发生事件“恰有一次击中飞机”发生,则C与D都发生A与B,A与C,B与C,B与D都不可能同时发生,B与D中必有一个发生答案:A与B,A与C,C与B,B与DB与D7某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是0.05和0.03,则抽检一件是次品的概率为_;抽检一件是甲级品的概率为_【解析】记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而抽检一件是次品的概率P(BC)P(B)P(C)0.08,抽检一件是甲级品的概率为P(A)1P(BC)0.92.答案:0.080.928在一次数学考试中,第22题和第2
7、3题为选做题,规定每位考生必须且只需在其中选做一题设4名考生选做这两题的可能性均为.则其中甲、乙2名学生选做同一道题的概率为_;甲、乙2名学生都选做第22题的概率为_【解析】设事件A表示“甲选做第22题”,事件B表示“乙选做第22题”,则甲,乙2名学生选做同一道题的事件为“AB ”,且事件A,B相互独立,所以P(AB )P(A)P(B)P()P().所以甲、乙两名学生选做同一道题的概率为;因为P(A)P(B),所以甲、乙两名学生都选做第22题的概率为.答案:三、解答题9(10分)某学校为了解高一新生的体质健康状况,对学生的体质进行了测试. 现从男、女生中各随机抽取20人,把他们的测试数据,按照
8、国家学生体质健康标准整理如表. 规定:数据60,体质健康为合格等级数据范围男生人数男生平均分女生人数女生平均分优秀90,10091.3291良好80,89483.9484.1及格60,7987070.2不及格60以下349.6349.1已知表格中有两处受到污损(1)从样本中随机选取一名学生,求这名学生体质健康合格的概率; (2)从男生样本和女生样本中各随机选取一人,求恰有一人的体质健康等级优秀的概率【解析】由题意得,男生优秀人数为204835人;女生及格人数为2024311人(1)样本中合格的学生数为:524481134,样本总数为:202040,这名学生体质健康合格的概率为.(2)设事件A“从男生样本中随机选出的人的体质健康等级是优秀”,P(A).事件B“从女生样本中随机选出的人的体质健康等级是优秀”, P(B).因为A,B为独立事件,故所求概率为P(A B)P(A )P(B)P(A)1P(B)(1P(A)P(B).