1、第三章3.23.2.1第3课时 一、选择题1log52log425等于() 导学号62240905A1BC1D2答案C解析log52log4251.2化简logbloga的值为() 导学号62240906A0 B1 C2logab D2logab答案A解析logbloga0.3若xlog341,则4x4x的值为() 导学号62240907A B C2 D1答案B解析xlog341,xlog43,4x4log433,4x,4x4x3.4若log5log36log6x2,则x() 导学号62240908A9 B C25 D答案D解析log5log36log6x2,2,lgx2lg5lg52,x.5
2、.等于() 导学号62240909Alg3 Blg3 C D答案C解析.6eln3eln2等于() 导学号62240910A1 B2 C D3答案C解析eln3eln2eloge33.二、填空题7计算log43log98_.导学号62240911答案解析log43log98.8已知f(3x)2xlog23,则f(21 007)的值等于_导学号62240912答案2 014解析令3xt,xlog3t,f(t)2log3tlog2322log2t,f(21 007)2log221 00721 0072 014.三、解答题9若log37log29log49mlog4,求m的值导学号62240913解
3、析log37log29log49mlog4,lgmlg2lg2,m2.10(20142015学年度湖北部分重点中学高一上学期期中测试)计算3log3427lg0.01ln e3的值导学号62240914解析 3log3427lg0.01ln e3432lg102ln e349230.一、选择题1已知log32a,3b5,则log3用a、b表示为() 导学号62240915A(ab1) B(ab)1C(ab1) Dab1答案A解析3b5,blog35.log3log330(log33log32log35)(1ab),选A2已知logax2,logbx1,logcx4,则logx(abc)等于()
4、 导学号62240916A B C D答案D解析由题意得xa2,xb,xc4,(abc)4x7,abcx,logx(abc).3设2a5bm,且2,则m() 导学号62240917A B10 C20 D100答案A解析2a5bm,alog2m,blog5m,logm2logm5logm102,m.故选A4方程eln|x|2的解是() 导学号62240918A2 B2C2或2 D4答案C解析eln|x|2,|x|2,x2或2.二、填空题5._.导学号62240919答案1解析1.6若mlog351,n5m,则n的值为_导学号62240920答案3解析mlog351,mlog53.n5m5log5
5、33.三、解答题7已知log98p,log2725q,试用p、q表示log52. 导学号62240921解析plog98log32,qlog2725log35,log52.8已知x、y、z均大于1,a0,logza24,logya40,log(xyz)a12,求logxa.导学号62240922解析由logza24得logaz,由logya40得logay,由log(xyz)a12得loga(xyz),即logaxlogaylogaz.logax,解得logax,logxa60.9已知logax3logxalogxy3(a1)导学号62240923(1)若设xat,试用a、t表示y;(2)若当0t2时,y有最小值8,求a和x的值解析(1)由换底公式,得logax3(a1),logay(logax)23logax3,当xat时,logaxlogaatt,logayt23t3,故yat23t3(t0)(2)ya(t)2,0t2,a1,当t时,ymina8,a16,此时xa64.