ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:973.50KB ,
资源ID:479159      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-479159-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试15导数的应用一含解析新人教B版.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试15导数的应用一含解析新人教B版.doc

1、考点测试15导数的应用(一)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3会用导数解决实际问题一、基础小题1函数f(x)1xsinx在(0,2)上是()A增函数B减函数C在(0,)上增,在(,2)上减D在(0,)上减,在(,2)上增答案A解析f(x)1cosx0,f

2、(x)在(0,2)上单调递增2函数f(x)x33x22在区间1,1上的最大值是()A2 B0 C2 D4答案C解析f(x)3x26x,令f(x)0,得x0或x2(舍去)所以f(x)在1,0)上是增函数,f(x)在(0,1上是减函数,所以当x0时,f(x)maxf(0)2.故选C.3已知函数f(x)2ef(e)ln x(e是自然对数的底数),则f(x)的极大值为()A2e1 B C1 D2ln 2答案D解析由题意知f(x),f(e),f(e),f(x),令f(x)0,得x2e,f(x)在(0,2e)上单调递增,在(2e,)上单调递减,f(x)的极大值为f(2e)2ln (2e)22ln 2,选D

3、.4已知函数f(x)x3ax2x1在(,)上是单调函数,则实数a的取值范围是()A,B(,)C(,)(,)D(,)答案A解析函数f(x)x3ax2x1的导函数为f(x)3x22ax1,且函数f(x)在(,)上是单调函数,在(,)上f(x)0恒成立,即3x22ax10恒成立,4a2120,解得a,实数a的取值范围是,故选A.5直线ya分别与曲线yex,yln x1交于两点M,N,则|MN|的最小值为()A1 B1ln 2 Cln 2 D1ln 2答案A解析分别令exa,ln x1a,其中a0,则x1ln a,x2ea1,从而|MN|x1x2|ln aea1|,构造函数h(a)ln aea1,求导

4、得h(a)ea1,当a(0,1)时,h(a)0,h(a)单调递增;当a(1,)时,h(a)f(a)f(c);函数f(x)在xc处取得极小值,在xe处取得极大值;函数f(x)在xc处取得极大值,在xe处取得极小值;函数f(x)的最小值为f(d)A B C D答案A解析由导函数图象可知在(,c),(e,)上,f(x)0,在(c,e)上,f(x)0,所以函数f(x)在(,c),(e,)上单调递增,在(c,e)上单调递减,所以f(a)f(b)f(e),错误故选A.7已知函数f(x)1ln x,存在x00,使得f(x0)0有解,则实数a的取值范围是()A(2,) B(,3)C(,1 D3,)答案C解析由

5、于函数f(x)的定义域是(0,),不等式f(x)1ln x0有解,即axxln x在(0,)上有解令h(x)xxln x,则h(x)1(ln x1)ln x,令h(x)0,得x1,当0x0;当x1时,h(x)0),所以f(x)ln xax,令g(x)ln xax,则g(x)a,当a0时,g(x)0恒成立,则f(x)在(0,)上单调递增,当x0时,f(x);当x时,f(x),所以f(x)只有一个极值点,不符合题意当a0时,可得f(x)有极大值点x,由于x0时f(x);当x时,f(x),因此原函数要有两个极值点,只要fln 10,解得0a0,a0,即a的取值范围是(,012(2018全国卷)已知函

6、数f(x)2sinxsin2x,则f(x)的最小值是_答案解析f(x)2cosx2cos2x4cos2x2cosx24(cosx1),所以当cosx时函数单调递减,当cosx时函数单调递增,从而得到函数的单调递减区间为(kZ),函数的单调递增区间为(kZ),所以当x2k,kZ时,函数f(x)取得最小值,此时sinx,sin2x,所以f(x)min2.13(2018江苏高考)若函数f(x)2x3ax21(aR)在(0,)内有且只有一个零点,则f(x)在1,1上的最大值与最小值的和为_答案3解析f(x)2x3ax21,f(x)6x22ax2x(3xa)若a0,则x0时,f(x)0,f(x)在(0,

7、)上为增函数,又f(0)1,f(x)在(0,)上没有零点,不符合题意,a0.当0x时,f(x)时,f(x)0,f(x)为增函数,x0时,f(x)有极小值,为f1.f(x)在(0,)内有且只有一个零点,f0,a3.f(x)2x33x21,则f(x)6x(x1)x1(1,0)0(0,1)1f(x)00f(x)4增1减0f(x)在1,1上的最大值为1,最小值为4.最大值与最小值的和为3.三、模拟小题14(2019河南郑州质检)函数f(x)x3ax2bxa2在x1时有极值10,则a,b的值为()Aa3,b3或a4,b11Ba4,b3或a4,b11Ca4,b11Da3,b3答案C解析由题意,得f(x)3

8、x22axb,则f(1)0,即2ab3.f(1)1aba210,即a2ab9.联立,解得(有极值)或(舍去,无极值)15(2019成都市高三第一次诊断考试)已知定义在R上的函数f(x)的图象关于直线xa(a0)对称,且当xa时,f(x)ex2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()Ae Be1 Ce De2答案B解析当xa,则由函数f(x)的图象关于直线xa对称,得f(x)f(2ax)e(2ax)2aex,由此作出函数f(x)的图象,如图所示,则当取得最小值0时,直线PA,PB关于直线xa对称,且其中一直线的倾斜角为,此时A,B

9、分别位于直线xa的左、右两侧,且直线PA,PB都与函数f(x)的图象相切,设A(x0,y0)(x0a),则f(x)(ex)ex,所以ex01,所以x00,y01,此时切线PA的方程为yx1,所以a1.由图象知,当xa1时,函数f(x)取得最小值e1,故选B.16(2019武邑中学二调)设函数f(x)x33x2ax5a,若存在唯一的正整数x0,使得f(x0)0,则a的取值范围是_答案解析设g(x)x33x25,h(x)a(x1),则g(x)3x26x3x(x2),当0x2时,g(x)0,当x0或x2时,g(x)0,g(x)在(,0)上单调递增,在(0,2)上单调递减,在(2,)上单调递增,当x2

10、时,g(x)取得极小值g(2)1,作出g(x)与h(x)的函数图象如图:显然当a0时,g(x)h(x)在(0,)上恒成立,即f(x)g(x)h(x)0无正整数解;要使存在唯一的正整数x0,使得f(x0)0,显然x02.即解得a.17(2019江苏南通重点中学模拟)若函数f(x)在定义域D内某区间H上是增函数,且在H上是减函数,则称yf(x)在H上是“弱增函数”已知函数g(x)x2(4m)xm在(0,2上是“弱增函数”,则实数m的值为_答案4解析根据题意,若函数f(x)在定义域D内某区间H上是增函数,且在H上是减函数,则称yf(x)在H上是“弱增函数”,已知函数g(x)x2(4m)xm在(0,2

11、上是“弱增函数”,则g(x)在给定区间上是递增函数,开口向上,则对称轴直线x0,m4,x4m在(0,2上单调递减,那么10,x(0,2,10,m4.综上可得m4.一、高考大题1(2019全国卷)已知函数f(x)sinxln (1x),f(x)为f(x)的导数证明:(1)f(x)在区间存在唯一极大值点;(2)f(x)有且仅有2个零点证明(1)设g(x)f(x),则g(x)cosx,g(x)sinx.当x时,g(x)单调递减,而g(0)0,g0,可得g(x)在上有唯一零点,设为.则当x(1,)时,g(x)0;当x时,g(x)0.所以g(x)在(1,)上单调递增,在上单调递减,故g(x)在上存在唯一

12、极大值点,即f(x)在上存在唯一极大值点(2)f(x)的定义域为(1,)当x(1,0时,由(1)知,f(x)在(1,0)上单调递增,而f(0)0,所以当x(1,0)时,f(x)0,故f(x)在(1,0)上单调递减又f(0)0,从而x0是f(x)在(1,0上的唯一零点当x时,由(1)知,f(x)在(0,)上单调递增,在上单调递减,而f(0)0,f0,所以存在,使得f()0,且当x(0,)时,f(x)0;当x时,f(x)0.故f(x)在(0,)上单调递增,在上单调递减又f(0)0,f1ln 0,所以当x时,f(x)0.从而,f(x)在上没有零点当x时,f(x)0,所以f(x)在上单调递减而f0,f

13、()0,所以f(x)在上有唯一零点当x(,)时,ln (x1)1.所以f(x)0,从而f(x)在(,)上没有零点综上,f(x)有且仅有2个零点2(2019全国卷)已知函数f(x)2x3ax2b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间0,1的最小值为1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由解(1)f(x)6x22ax2x(3xa)令f(x)0,得x0或x.若a0,则当x(,0)时,f(x)0;当x时,f(x)0.故f(x)在(,0),上单调递增,在上单调递减若a0,则f(x)在(,)上单调递增若a0;当x时,f(x)0,则f(x)有2个不同的零

14、点,设为x1,x2(x1x2)由f(x)0,得x1,x2.列表如下:x(,x1)x1(x1,x2)x2(x2,)f(x)00f(x)极大值极小值所以f(x)的极大值Mf(x1)证法一:Mf(x1)x(b1)xbx13x2(b1)x1bx1()3()3.因此M.证法二:因为00)(1)讨论f(x)的单调性;(2)若g(x)x2f(x),设x1,x2(x1x2)是函数g(x)的两个极值点,若a,且g(x1)g(x2)k恒成立,求实数k的最大值解(1)f(x)的定义域为(0,),f(x)ax(a1).若0a1.由f(x)0得0x;由f(x)0得1x1,则00得0x1;由f(x)0得x0,x1x2a1

15、,x1x21,x2,a,x1x2.解得0x1,g(x1)g(x2)ln (xx)(a1)(x1x2)2ln x1.设h(x)2ln x,则h(x)x0),当a10,即a1时,f(x)0,函数f(x)在(0,)上单调递增,无极小值当a10,即a1时,由f(x)0,得0x0,得xa1,函数f(x)在(a1,)上单调递增f(x)极小值f(a1)1ln (a1)综上所述,当a1时,f(x)无极小值;当a1时,f(x)极小值1ln (a1)(2)证明:令F(x)f(x)g(x)ln x(x0),当1a1时,要证f(x)g(x),即证F(x)0,即证xln xasinx10.证法一:要证xln xasin

16、x10,即证xln xasinx1.若00),则h(x)1cosx0,所以h(x)在(0,)上单调递增,故h(x)0,即xsinx(x0)所以ax1asinx1(x0),(*)令q(x)xln xx1,则q(x)ln x,当x(0,1)时,q(x)0,q(x)在(1,)上单调递增故q(x)q(1)0,即xln xx1,当且仅当x1时取等号又0asinx1,所以当0asinx1.若a0,即证xln x1.令m(x)xln x,则m(x)ln x1,m(x)在上单调递减,在上单调递增,m(x)minm1,故xln x1.若1a0,当x(0,1时,asinx11,故xln xasinx1;当x(1,

17、)时,asinx10,由知当x1时,m(x)xln xm(1)0,故xln xasinx1.所以当x(0,)时,xln xasinx1.综合可知,当1a1时,f(x)g(x)证法二:当x1时,易知xln x0,asinx10,故xln xasinx10.当x1时,0asin110显然成立,故xln xasinx10.当0x0,故sinxasinxsinx,令h(x)xsinx(x0),则h(x)1cosx0,所以h(x)在(0,)上单调递增,故h(x)0,即xsinx(x0),故xasinx(x0),只需证q(x)xln xx10,q(x)ln x,当x(0,1)时,q(x)0,q(x)在(0,1)上单调递减,故当0x0,故xln xasinx10.综合可知,当1a1时,f(x)g(x)

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1