ImageVerifierCode 换一换
格式:PPT , 页数:18 ,大小:464.50KB ,
资源ID:475596      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-475596-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(陕西省蓝田县焦岱中学高中数学必修五课件:3-4简单线性规划6 .ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

陕西省蓝田县焦岱中学高中数学必修五课件:3-4简单线性规划6 .ppt

1、xyoxOyx-4y+3=0 x=13x+5y-25=0ABCA:(5,2)B:(1,1)C:(1,4.4)问题1:x 有无最大(小)值?问题2:y 有无最大(小)值?问题3:2x+y 有无最大(小)值?XOYX-4y+3=0X=13x+5y-25=0ABCA:(5,2)B:(1,1)C:(1,4.4)2x+y=02x+y=1此时Z=3此时Z=12Zmax=12Zmin=3Z=2x+y有关概念(1)由x,y 的不等式(或方程)组成的不等式组称为x,y 的约束条件。(2)关于x,y 的一次不等式或方程组成的不等式组称为x,y 的线性约束条件。(3)欲达到最大值或最小值所涉及的变量x,y 的解析式

2、称为目标函数。关于x,y 的一次目标函数称为线性目标函数。求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。(4)满足线性约束条件的解(x,y)称为可行解。所有可行解组成的集合称为可行域。(5)使目标函数取得最大值或最小值的可行解称为最优解。练习解下列线性规划问题:1、求z=2x+y的最大值,使式中的x、y满足约束条件:xOyABCy=x x+y=1y=-12x+y=0B:(-1,-1)C:(2,-1)Zmin=-3Zmax=3目标函数:z=2x+y解线性规划问题的步骤:(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;

3、(3)求:通过解方程组求出最优解;(4)答:作出答案。(1)画:画出线性约束条件所表示的可行域;2、求z=3x+y的最大值,使式中的x、y满足约束条件2x+3y 24 x-y 7 y 6 x 0 y 0讨论:XOYABCD712-768y=6x-y=72x+3y=24l0:3x+y=0l1思考:目标函数:Z=x+3y 目标函数:Z=3x+y 解线性规划问题的步骤:(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(3)求:通过解方程组求出最优解;(4)答:作出答案。小结:(1)画:画出线性约束条件所表示的可行域;结论:1、线性目标函数的最

4、大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义.应用问题:1某工厂制造甲、乙两种产品,已知制造甲产品1kg要用煤9吨,电力4kw,劳力(按工作日计算)3个;制造乙产品1kg要用煤4吨,电力5kw,劳力10个.又知制成甲产品1kg可获利7万元,制成乙产品1kg可获利12万元,现在此工厂只有煤360吨,电力200kw,劳力300个,在这种条件下应生产甲、乙两种产品各多少千克,才能获得最大经济效益?【解题回顾】(1)用线性规划的方法解题的一般步骤是:设未知数、列出约束条件及目标函数、作出可行域、求出最优解、写出答案.(2)本

5、例的关键是分析清楚在哪一个点取最大值.结论:用线性规划的方法解题的一般步骤是:(1)充分理解题意建立数学模型,也就是设未知数、列出约束条件及目标函数.(2)作图.作出可行域、求出最优解.(3)根据实际意义写出答案.小结:二元一次不等式表示平面区域直线定界,特殊点定域简单的线性规划约束条件目标函数可行解可行域最优解应用求解方法:画、移、求、答练习、已知函数f(x)=ax2-c,满足-4f(1)-1,-1f(2)5,求f(3)的取值范围。-4f(1)-1 -4a-c-1 0a3-1f(2)5 -14a-c5 1c7解:依题意:而所求f(3)=9a-c 09a27 -7-c-1-1f(3)26-79

6、a-c26正解一:依题意得:f(1)=a-c f(2)=4a-c可知:f(3)=9a-c=-5/3f(1)+8/3f(2)-4f(1)-1 ,-1f(2)5 5/3-5/3f(1)20/3,-8/38/3f(2)40/3 -1-5/3f(1)+8/3f(2)20即:-1f(3)20正解二:线性约束条件:目标函数:t=f(3)=9a-c-4a-c-1 -14a-c5 作出约束条件的可行域:为平行四边形ABCD,平行直线系t=9a-c,c=9a-t,斜率为9。ac224646-2-28-4-4o说明:约束条件变化时要用等价变换DABC(3,7)当平行直线过A(0,1)时,tmin=90-1=-1过点C(3,7)时,tmax=93-7=20 -1f(3)20

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1