ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:80.50KB ,
资源ID:475305      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-475305-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《同步备课》高中数学(北师大版)必修四教案:3.1 知识讲解:同角三角函数的基本关系.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《同步备课》高中数学(北师大版)必修四教案:3.1 知识讲解:同角三角函数的基本关系.doc

1、同角三角函数的基本关系【课前复习】1叙述任意角三角函数的定义2计算下列各式的值:sin230cos230_;sin2420cos2420_;_;tancot_【学习目标】1掌握同角三角函数的基本关系式:sin2cos21,tan2运用同角三角函数的基本关系式解决求值问题【基础知识精讲】本课时的重点是同角三角函数关系式及其变式的应用,难点是三角函数值符号在不同象限时的确定1同角三角函数的基本关系式,反映三角函数之间的内在联系它们都是根据三角函数的定义推导出来的亦可以利用单位圆用几何方法推出2对同角三角函数基本关系式的应用应注意:(1)关系式中要注意同角例如sin2cos21就不恒成立(2)关系式

2、仅当的值使等式两边都有意义时才成立如,当(kZ)时,tancot1就不成立(3)对公式除了顺用,还应用逆用、变用、活用例如,由sin2cos21,可变形为cos21sin2,cos,1sin2cos2,sincos等(4)注意“1”的代换,可用sin2cos2,tancot等去代换13用同角三角函数的基本关系式时一定要注意“同角”,至于角的表达形式是无关重要的,如:sin22cos221,tan,tan4cot41等4sin2是(sin)2的简写,读作“sin的平方”,而不能写成sin2,前者是的正弦值的平方,后者是的平方的正弦,两者是不同的5同角三角函数的基本关系式有哪些应用?(1)已知某任

3、意角的正弦、余弦、正切值中的一个,求出其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式其中,根据角终边所在象限求出其三角函数值,是本课时的一个难点,它的结果不唯一,需要讨论,正确运用平方根及象限角的概念,是解决这一难点的关键6根据一个任意角的正弦、余弦、正切中的一个值求其余两个值(简称“知一求二”)时,如何判断是一组结果还是两组结果?如果角所在象限已指定,那么只有一组解;如果角所在象限没有指定,一般应有两组解7基本关系式的重要等价变形有哪几个?常用的有以下几个:sin21cos2;cos21sin2;sincostan;cos;(sincos)212sincos;|cos|【学习方法

4、指导】例1已知是第三象限角且tan2,求cos的值分析:本题是1992年高考题,虽然简单,但有很高的训练价值,下面给出两种解法解法一:(公式法)由tan2知2,sin2cos,sin24cos2,而sin2cos21,4cos2cos21,cos2由在第三象限知cos解法二:(锐角示意图法)图441先视为锐角,作锐角示意图,如图441,则cosABC是第三象限角,cos当已知角的一个三角函数值是字母时,如何求其他三角函数值?例2已知sinm(|m|1),求tan,cos分析:由sin求cos,需用公式sin2cos21,但cos取正或取负应根据所在象限来确定,所以需对分类讨论解:(1)当1m1

5、,且m0时,若在第一、四象限,则cos,tan;若在第二、三象限,则cos,tan(2)若m0,则k(kZ),tan0,cos1点评:当已知角的一个三角函数值为字母时,应对分类讨论例3已知tan,求下列各式的值:(1);(2)2sin2sincos3cos2分析:根据题目的条件,可将欲求值的式用tan来表达解:(1)原式(2)原式点评:本例的解法,体现了一种转化与化归的数学思想方法,把含有正弦、余弦的分式和齐次式转化为只含有正切的式子是常用的三角变换技巧【知识拓展】1根据同角三角函数的基本关系式及三角函数的定义,可得出八个式子即2同角三角函数的基本关系式是整个三角函数一章的重点内容之一,应牢记三个基本公式,并能正确地运用它们进行三角函数求值、化简、证明在应用中逐渐掌握解题技巧:如“1”的变形,切化弦思想,等价转化的思想

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3