1、1-10 函数的应用-根与零点及二分法一、知识点:1方程有实根 2零点定理:如果函数在区间 上的图象是 的一条曲线,并且有 ,那么,函数在区间 内有零点,即存在,使得 ,这个也就是方程的根.3二分法求函数零点近似值的步骤:确定区间 ,验证 ,给定 。求 ;计算 ;若 ,则 ;若 ,则令 ;若 ,则令 。判断 二、基础篇:1下列函数中有2个零点的是 ( )A B C D 2若函数在区间上为减函数,则在上 ( )A至少有一个零点 B只有一个零 C没有零点 D至多有一个零点3用“二分法”求方程在区间内的实根,取区间中点为,那么下一个有根的区间是 。4若的最小值为1,则的零点个数为 ( )A0 B1
2、C0或l D不确定三、提高篇:5已知唯一的零点在区间、内,那么下面命题错误的( )A函数在或内有零点 B函数在内无零点C函数在内有零点 D函数在内不一定有零点6若函数在上连续,且有则函数在上 ( )A一定没有零点 B至少有一个零点 C只有一个零点 D零点情况不确定7如果二次函数有两个不同的零点,则的取值范围是( )A B C D8函数的零点个数为 。9设,用二分法求方程内近似解的过程中得则方程的根落在区间()A B C D不能确定10证明:函数在区间(2,3)上至少有一个零点。知识整理、理解记忆要点1. 2. 3. 4. 四、自主学习:1求零点的个数为 ( )A B C D2若函数在上连续,且同时满足,则 ( )A 在上有零点 B 在上有零点C 在上无零点 D 在上无零点3方程的实数根的个数是 ( )A1 B2 C3 D无数个