1、第3讲分类讨论思想思想方法解读分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略1中学数学中可能引起分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列an的前n项和公式等(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等
2、(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等2进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论其中最重要的一条是“不重不漏”3解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归
3、纳小结,综合得出结论体验高考1(2015山东改编)设函数f(x)则满足f(f(a)2f(a)的a的取值范围是_答案解析由f(f(a)2f(a)得,f(a)1.当a1时,有3a11,a,a1.当a1时,有2a1,a0,a1.综上,a.2(2015天津)已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,FM.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围解(1)由已知有,又由a2b2c2,可得a23c2,b22c2.设直线FM的斜率为k(k0),
4、F(c,0),则直线FM的方程为yk(xc)由已知,有222,解得k.(2)由(1)得椭圆方程为1,直线FM的方程为y(xc),两个方程联立,消去y,整理得3x22cx5c20,解得xc,或xc.因为点M在第一象限,可得点M的坐标为.由FM .解得c1,所以椭圆的方程为1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t,即yt(x1)(x1)与椭圆方程联立得消去y,整理得2x23t2(x1)26,又由已知,得t ,解得x1或1x0.设直线OP的斜率为m,得m,即ymx(x0),与椭圆方程联立,整理得m2.当x时,有yt(x1)0,因此m0,于是m ,得m.当x(1,0)时,有yt(x
5、1)0,因此m0,于是m ,得m.综上,直线OP的斜率的取值范围是.高考必会题型题型一由概念、公式、法则、计算性质引起的分类讨论例1设集合AxR|x24x0,BxR|x22(a1)xa210,aR,若BA,求实数a的取值范围解A0,4,BA,于是可分为以下几种情况(1)当AB时,B0,4,由根与系数的关系,得解得a1.(2)当BA时,又可分为两种情况当B时,即B0或B4,当x0时,有a1;当x4时,有a7或a1.又由4(a1)24(a21)0,解得a1,此时B0满足条件;当B时,4(a1)24(a21)0,解得a1.综合(1)(2)知,所求实数a的取值范围为a1或a1.点评对概念、公式、法则的
6、内含及应用条件的准确把握是解题关键,在本题中,BA,包括B和B两种情况解答时就应分两种情况讨论,在关于指数、对数的运算中,底数的取值范围是进行讨论时首先要考虑的因素变式训练1在公差为d的等差数列an中,已知a110,且a1,2a22,5a3成等比数列(1)求d,an;(2)若d0,求|a1|a2|an|.解(1)由题意得5a3a1(2a22)2,即d23d40,故d1或d4.所以ann11,nN*或an4n6,nN*.(2)设数列an的前n项和为Sn.因为d0,由(1)得d1,ann11,Snn2n,当n11时,|a1|a2|a3|an|Snn2n.当n12时,|a1|a2|a3|an|Sn2
7、S11n2n110.综上所述,|a1|a2|a3|an|题型二分类讨论在含参函数中的应用例2已知函数f(x)x22ax1a在x0,1上有最大值2,求a的值解函数f(x)x22ax1a(xa)2a2a1,对称轴方程为xa.(1)当a1时,f(x)maxf(1)a,a2.综上可知,a1或a2.点评本题中函数的定义域是确定的,二次函数的对称轴是不确定的,二次函数的最值问题与对称轴息息相关,因此需要对对称轴进行讨论,分对称轴在区间内和对称轴在区间外,从而确定函数在给定区间上的单调性,即可表示函数的最大值,从而求出a的值变式训练2已知函数f(x)2exax2(xR,aR)(1)当a1时,求曲线yf(x)
8、在x1处的切线方程;(2)求x0时,若不等式f(x)0恒成立,求实数a的取值范围解(1)当a1时,f(x)2exx2,f(x)2ex1,f(1)2e1,即曲线yf(x)在x1处的切线的斜率k2e1,又f(1)2e3,所以所求的切线方程是y(2e1)x2.(2)易知f(x)2exa.若a0,则f(x)0恒成立,f(x)在R上单调递增;若a0,则当x(,ln )时,f(x)0,f(x)单调递增又f(0)0,所以若a0,则当x0,)时,f(x)f(0)0,符合题意若a0,则当ln 0,即00,即a2,则当x(0,ln )时,f(x)单调递减,f(x)f(0)0,不符合题意综上,实数a的取值范围是(,
9、2题型三根据图形位置或形状分类讨论例3在约束条件下,当3s5时,z3x2y的最大值的变化范围是_答案7,8解析由取点A(2,0),B(4s,2s4),C(0,s),C(0,4)当3s4时,可行域是四边形OABC(含边界),如图(1)所示,此时,7zmaxPF2,PF14,PF22,2.综上知,的值为或2.高考题型精练1若关于x的方程|ax1|2a (a0且a1)有两个不等实根,则a的取值范围是_答案解析方程|ax1|2a(a0且a1)有两个实数根转化为函数y|ax1|与y2a有两个交点当0a1时,如图(1),02a1,即0a1时,如图(2),而y2a1不符合要求综上,0a0时,要使zyax取得
10、最大值的最优解不唯一,则a2;当a0)的焦点为F,P为其上的一点,O为坐标原点,若OPF为等腰三角形,则这样的点P的个数为_答案4解析当POPF时,点P在线段OF的中垂线上,此时,点P的位置有两个;当OPOF时,点P的位置也有两个;对FOFP的情形,点P不存在事实上,F(p,0),若设P(x,y),则FOp,FP,若p,则有x22pxy20,又y24px,x22px0,解得x0或x2p,当x0时,不构成三角形当x2p(p0)时,与点P在抛物线上矛盾符合要求的点P一共有4个4函数f(x)的值域为_答案(,2)解析当x1时,f(x)logx是单调递减的,此时,函数的值域为(,0;当x1时,f(x)
11、2x是单调递增的,此时,函数的值域为(0,2)综上,f(x)的值域是(,2)5已知集合Ax|1x5,Cx|axa3若CAC,则a的取值范围是_答案(,1解析因为CAC,所以CA.当C时,满足CA,此时aa3,得a;当C时,要使CA,则解得a1.综上,a的取值范围是(,16已知函数f(x)x2ax3a,若x2,2时,f(x)0恒成立,求a的取值范围解要使f(x)0恒成立,则函数在区间2,2上的最小值不小于0,设f(x)的最小值为g(a)(1)当4时,g(a)f(2)73a0,得a,故此时a不存在(2)当2,2,即4a4时,g(a)f3a0,得6a2,又4a4,故4a2.(3)当2,即a4时,g(
12、a)f(2)7a0,得a7,又a4,故7a4,综上得7a2.7已知ax2(a1)x10,求不等式的解集解若a0,原不等式等价于x11.若a0,解得x1.若a0,原不等式等价于(x)(x1)0.当a1时,1,(x)(x1)1时,1,解(x)(x1)0得x1;当0a1,解(x)(x1)0得1x.综上所述:当a0时,解集为x|x1;当a0时,解集为x|x1;当0a1时,解集为x|1x1时,解集为x|x18已知首项为的等比数列an不是递减数列,其前n项和为Sn(nN*),且S3a3,S5a5,S4a4成等差数列(1)求数列an的通项公式;(2)设TnSn(nN*),求数列Tn的最大项的值与最小项的值解
13、(1)设等比数列an的公比为q,因为S3a3,S5a5,S4a4成等差数列,所以S5a5S3a3S4a4S5a5,即4a5a3,于是q2.又an不是递减数列且a1,所以q.故等比数列an的通项公式为ann1(1)n1.(2)由(1)得Sn1n当n为奇数时,Sn随n的增大而减小,所以1SnS1,故0SnS1.当n为偶数时,Sn随n的增大而增大,所以S2SnSnS2.综上,对于nN*,Tn的取值范围是,0)(0,所以数列Tn最大项的值为,最小项的值为.9已知a是实数,函数f(x)(xa)(1)求函数f(x)的单调区间;(2)设g(a)为f(x)在区间0,2上的最小值写出g(a)的表达式;求a的取值
14、范围,使得6g(a)2.解(1)函数的定义域为0,),f(x)(x0)若a0,则f(x)0,f(x)有单调递增区间0,)若a0,令f(x)0,得x,当0x时,f(x)时,f(x)0.则f(x)有单调递减区间0,有单调递增区间(,)(2)由(1)知,若a0,f(x)在0,2上单调递增,所以g(a)f(0)0.若0a6,f(x)在0,上单调递减,在(,2上单调递增,所以g(a)f().若a6,f(x)在0,2上单调递减,所以g(a)f(2)(2a)综上所述,g(a)令6g(a)2.若a0,无解若0a6,解得3a0),当a0时,f(x)0时,由f(x)0得0xa,由f(x)a,f(x)增区间为(0,a),减区间为(a,)(2)由(1)知:当a0时,f(x)在(0,)上为减函数,而f(1)0,f(x)0在区间x(0,)上不可能恒成立;当a0时,f(x)在(0,a)上单调递增,在(a,)上单调递减,f(x)maxf(a)aln aa1,令g(a)aln aa1,依题意有g(a)0,而g(a)ln a,且a0,g(a)在(0,1)上单调递减,在(1,)上单调递增,g(a)ming(1)0,故a1.