ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:150KB ,
资源ID:471468      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-471468-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《成才之路》2015届高考数学二轮复习 专题5 第1讲 直线与圆素能训练(文、理).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《成才之路》2015届高考数学二轮复习 专题5 第1讲 直线与圆素能训练(文、理).doc

1、【成才之路】2015届高考数学二轮复习 专题5 第1讲 直线与圆素能训练(文、理)一、选择题1若直线l1:xay60与l2:(a2)x3y2a0平行,则l1与l2间的距离为()A.B.C.D.答案B解析由l1l2知3a(a2)且2a6(a2),2a218,求得a1,l1:xy60,l2:xy0,两条平行直线l1与l2间的距离为d.故选B.2(2013山东潍坊模拟)若PQ是圆x2y29的弦,PQ的中点是(1,2),则直线PQ的方程是()Ax2y30Bx2y50C2xy40D2xy0答案B解析结合圆的几何性质易知直线PQ过点A(1,2),且和直线OA垂直,故其方程为y2(x1),整理得x2y50.

2、3(文)C1:(x1)2y24与C2:(x1)2(y3)29相交弦所在直线为l,则l被O:x2y24截得弦长为()A.B4C.D.答案D解析由C1与C2的方程相减得l:2x3y20.圆心O(0,0)到l的距离d,O的半径R2,截得弦长为22.(理)(2014哈三中一模)直线xy0截圆x2y24所得劣弧所对圆心角为()A.B.C.D.答案D解析弦心距d1,半径r2,劣弧所对的圆心角为.4(2014湖南文,6)若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21B19C9D11答案C解析本题考查了两圆的位置关系由条件知C1:x2y21,C2:(x3)2(y4)225m,圆心与半径

3、分别为(0,0),(3,4),r11,r2,由两圆外切的性质知,51,m9.5(文)(2014哈三中二模)一动圆过点A(0,1),圆心在抛物线yx2上,且恒与定直线l相切,则直线l的方程为()Ax1BxCyDy1答案D解析A(0,1)是抛物线x24y的焦点,又抛物线的准线为y1,动圆过点A,圆心C在抛物线上,由抛物线的定义知|CA|等于C到准线的距离,等于C的半径,C与定直线l:y1总相切(理)(2014河北衡水中学5月模拟)已知圆的方程x2y24,若抛物线过点A(0,1)、B(0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是()A.1(y0)B.1(y0)C.1(x0)D.1(x0)答案

4、C解析如图,设圆的切线l为抛物线的准线,F为焦点,过A、B、O作l的垂线,垂足为C、D、E,由抛物线的定义知,|FA|FB|AC|BD|2|OE|4,由椭圆定义知F在以A、B为焦点的椭圆上,所以方程为1,x0时不合题意,故选C.6(2014福建理,6)直线l:ykx1与圆O:x2y21相交于A,B两点,则“k1”是“OAB的面积为”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分又不必要条件答案A解析圆心O(0,0)到直线l:kxy100的距离d,弦长为|AB|2,SOAB|AB|d,k1,因此当“k1”时,“SOAB”,故充分性成立“SOAB”时,k也有可能为1,必要性不成

5、立,故选A.二、填空题7(2013天津耀华中学月考)已知直线l过点P(3,4)且与点A(2,2),B(4,2)等距离,则直线l的方程为_答案2x3y180或2xy20解析本题主要考查直线方程的求法,属中档题当直线斜率不存在时,则直线方程为x3,则A、B两点到x3的距离分别为d15,d21,不符要求故直线斜率存在,设为k,则直线方程可设为y4k(x3),即kxy3k40,则由题意得,解得k或k2,故直线方程为2x3y180或2xy20.8(文)(2013天津耀华中学月考)在平面直角坐标系xOy中,已知圆x2y24上有且只有四个点到直线12x5yc0的距离为1,则实数c的取值范围是_答案(13,1

6、3)解析本题考查了直线与圆的位置关系,利用数形结合可解决此题,属中档题要使圆x2y24上有且只有四个点到直线12x5yc0的距离为1,只需满足圆心到直线的距离小于1即可即1,解|c|13,13c0)的焦点在圆C1上(1)求抛物线C2的方程;(2)过点A(1,0)的直线l与抛物线C2交于B、C两点,又分别过B、C两点作抛物线C2的切线,当两条切线互相垂直时,求直线l的方程解析(1)易求得圆心到直线的距离为,所以半径r1.圆C1:x2y21.抛物线的焦点(0,)在圆x2y21上,得p2,所以x24y.(2)设所求直线的方程为yk(x1),B(x1,y1),C(x2,y2)将直线方程代入抛物线方程可

7、得x24kx4k0,x1x24k.因为抛物线y,所以y,所以两条切线的斜率分别为、,所以1,所以k1.故所求直线方程为xy10.(理)(2014石家庄市质检)已知动圆C过定点M(0,2),且在x轴上截得弦长为4.设该动圆圆心的轨迹为曲线C.(1)求曲线C方程;(2)设点A为直线l:xy20上任意一点,过A作曲线C的切线,切点分别为P、Q,求APQ面积的最小值及此时点A的坐标解析(1)设动圆圆心坐标为C(x,y),根据题意得,化简得x24y.(2)解法一:设直线PQ的方程为ykxb,由消去y得x24kx4b0.设P(x1,y1),Q(x2,y2),则,且16k216b以点P为切点的切线的斜率为y

8、1x1,其切线方程为yy1x1(xx1),即yx1xx.同理过点Q的切线的方程为yx2xx.两条切线的交点A(xA,yB)在直线xy20上,解得,即A(2k,b)则:2kb20,即b22k,代入16k216b16k23232k16(k1)2160,|PQ|x1x2|4,A(2k,b)到直线PQ的距离为d,SAPQ|PD|d4|k2b|4(k2b)4(k22k2)4(k1)21.当k1时,SAPQ最小,其最小值为4,此时点A的坐标为(2,0)解法二:设A(x0,y0)在直线xy20上,点P(x1,y1),Q(x2,y2)在抛物线x24y上,则以点P为切点的切线的斜率为y1x1,其切线方程为yy1

9、x1(xx1),即yx1xy1,同理以点Q为切点的方程为yx2xy2.设两条切线均过点A(x0,y0),则点P,Q的坐标均满足方程y0xx0y,即直线PQ的方程为:yx0xy0,代入抛物线方程x24y消去y可得:x22x0x4y00|PQ|x1x2|A(x0,y0)到直线PQ的距离为d,SAPQ|PQ|d|x4y0|(x4y0)(x4x08)(x02)24当x02时,SAPQ最小,其最小值为4,此时点A的坐标为(2,0)10已知点A(2,0),B(2,0),直线PA与直线PB斜率之积为,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设M、N是曲线C上任意两点,且|,是否存在以原点为圆心且与

10、MN总相切的圆?若存在,求出该圆的方程;若不存在,请说明理由解析(1)设P(x,y),则由直线PA与直线PB斜率之积为得,(x2),整理得曲线C的方程为1(x2)(2)若|,则.设M(x1,y1),N(x2,y2)若直线MN斜率不存在,则y2y1,N(x1,y1)由得1,又1.解得直线MN方程为x.原点O到直线MN的距离d.若直线MN斜率存在,设方程为ykxm.由得(4k23)x28kmx4m2120.x1x2,x1x2.(*)由得1,整理得(k21)x1x2km(x1x2)m20.代入(*)式解得7m212(k21)此时(4k23)x28kmx4m2120中0.此时原点O到直线MN的距离d.

11、故原点O到直线MN的距离恒为d.存在以原点为圆心且与MN总相切的圆,方程为x2y2.一、选择题11直线l与圆x2y22x4ya0(a3)相交于A、B两点,若弦AB的中点为(2,3),则直线l的方程为()Axy50Bxy10Cxy50Dxy30答案A解析设圆x2y22x4ya0(a7或a或aC3a或a7Da7或a3答案C解析本题主要考查直线和圆的位置关系、补集思想及分析、理解、解决问题的能力两条平行线与圆都相交时,由得a,两条直线都和圆相离时,由得a7,所以两条直线和圆“相切”时a的取值范围3a或a7,故选C.二、填空题15(2013杭州质检)在ABC中,角A、B、C的对边分别为a、b、c,若s

12、in2Asin2Bsin2C,则直线axbyc0被圆x2y29所截得弦长为_答案2解析由正弦定理得a2b2c2,圆心到直线距离d,弦长l222.16(2013合肥质检)设直线mxy30与圆(x1)2(y2)24相交于A、B两点,且弦长为2,则m_.答案0解析圆的半径为2,弦长为2,弦心距为1,即得d1,解得m0.三、解答题17(文)(2013海口调研)已知圆C:x2y2r2(r0)经过点(1,)(1)求圆C的方程;(2)是否存在经过点(1,1)的直线l,它与圆C相交于A、B两个不同点,且满足关系(O为坐标原点)的点M也在圆C上,如果存在,求出直线l的方程;如果不存在,请说明理由解析(1)由圆C

13、:x2y2r2,再由点(1,)在圆C上,得r212()24,所以圆C的方程为x2y24.(2)假设直线l存在,设A(x1,y1),B(x2,y2),M(x0,y0)若直线l的斜率存在,设直线l的方程为y1k(x1),联立消去y得,(1k2)x22k(k1)xk22k30,由韦达定理得x1x22,x1x21,y1y2k2x1x2k(k1)(x1x2)(k1)23,因为点A(x1,y1),B(x2,y2)在圆C上,因此,得xy4,xy4,由得,x0,y0,由于点M也在圆C上,则()2()24,整理得3x1x2y1y24,即x1x2y1y20,所以1(3)0,从而得,k22k10,即k1,因此,直线

14、l的方程为y1x1,即xy20.若直线l的斜率不存在,则A(1,),B(1,),M(,)()2()244,故点M不在圆上与题设矛盾,综上所知:k1,直线方程为xy20.(理)已知圆O:x2y22交x轴于A、B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交直线x2于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;(3)试探究:当点P在圆O上运动时(不与A,B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由解析(1)因为a,e,所以c1,则b1,即椭圆C的标准方程为y21.(2)因为P(1,1),F(1,0),所以kPF,kOQ2,所以直线OQ的方程为y2x.又Q在直线x2上,所以点Q(2,4)kPQ1,kOP1,kOPkPQ1,即OPPQ,故直线PQ与圆O相切(3)当点P在圆O上运动时,直线PQ与圆P保持相切的位置关系,设P(x0,y0),(x0),则y2x,kPF,kOQ,直线OQ的方程为yx,点Q(2,),kPQ,又kOP.kOPkPQ1,即OPPQ(P不与A、B重合),直线PQ始终与圆O相切版权所有:高考资源网()

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3