ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:3.14MB ,
资源ID:468874      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-468874-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山东省济宁市嘉祥县第一中学2019-2020学年高一数学6月月考试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

山东省济宁市嘉祥县第一中学2019-2020学年高一数学6月月考试题(含解析).doc

1、山东省济宁市嘉祥县第一中学2019-2020学年高一数学6月月考试题(含解析)一、选择题1.设向量 (2,4)与向量 (x,6)共线,则实数x( )A. 2B. 3C. 4D. 6【答案】B【解析】由向量平行的性质,有24x6,解得x3,选B考点:本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.2.设向量,若,则实数( )A. 1B. 0C. D. 2【答案】C【解析】【分析】写出向量的坐标,由,得,即求.【详解】.,.故选:.【点睛】本题考查向量垂直的性质,属于基础题.3.已知直线是平面的斜线,则内不存在与( )A. 相交的直线B. 平行的直线C. 异面的直线D. 垂直的直线

2、【答案】B【解析】【分析】根据平面的斜线的定义,即可作出判定,得到答案【详解】由题意,直线是平面的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面内肯定不存在与直线平行的直线故答案为B【点睛】本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题4.在中,点满足,则( )A. B. C. D. 【答案】D【解析】【详解】因为,所以,即;故选D.5.在中,为的三等分点,则( )A. B. C. D. 【答案】B【解析】试题分析:因为,所以,以点为坐标原点,分别为轴建立直角坐标系,设,又为的三

3、等分点所以,所以,故选B.考点:平面向量的数量积.【一题多解】若,则,即有,为边的三等分点,则,故选B6.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为( )A. B. C. D. 【答案】C【解析】【分析】将平移到一起,根据等边三角形的性质判断出两条异面直线所成角的大小.【详解】连接如下图所示,由于分别是棱和棱的中点,故,根据正方体的性质可知,所以是异面直线所成的角,而三角形为等边三角形,故.故选C.【点睛】本小题主要考查空间异面直线所成角的大小的求法,考查空间想象能力,属于基础题.7.在中,边,分别是角,的对边,且满足,若,则 的值为 A. B. C. D.

4、 【答案】A【解析】【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【详解】在中,由正弦定理可得化为:即在中,故,可得,即故选【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题8.在中,是边的中点.为所在平面内一点且满足,则的值为( )A. B. C. D. 【答案】D【解析】【分析】根据平面向量基本定理可知,将所求数量积化为;由模长的等量关系可知和为等腰三角形,根据三线合一的特点可将和化为和,代入可求得结果.【详解】为中点 和为等腰三角形,同理可得:本题正确选项:【点

5、睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.二多选题(本题共4道小题,每小题5分,共20分)9.已知是两个不重合的平面,是两条不重合的直线,则下列命题正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则与所成的角和与所成的角相等【答案】BCD【解析】【分析】根据线、面的位置关系,逐一进行判断.【详解】选项A:若,则或,又,并不能得到这一结论,故选项A错误;选项B:若,则由线面垂直的性质定理和线面平行的性质定理可得,故选项B正确;选项C:若,则有面面平行的性质定理可知,故选项C正确;选项D:若,则由线面角的

6、定义和等角定理知,与所成的角和与所成的角相等,故选项D正确.故选:BCD.【点睛】本题考查了线面垂直的性质定理,线面平行的性质定理,面面平行的性质定理,以及线面角的定义和等角定理等基础知识,需要对每个选项逐一进行判断,属于中档题.10.已知四棱台的上下底面均为正方形,其中,则下述正确的是( )A. 该四棱台的高为B. C. 该四棱台的表面积为26D. 该四棱台外接球的表面积为【答案】AD【解析】【分析】根据棱台的性质,补全为四棱锥,根据题中所给的性质,进行判断【详解】解:由棱台性质,画出切割前的四棱锥,由于,可知 与相似比为;则,则,则,该四棱台的高为,对;因为,则与夹角为,不垂直,错;该四棱

7、台的表面积为,错;由于上下底面都是正方形,则外接球的球心在上,在平面上中,由于,则,即点到点与点的距离相等,则,该四棱台外接球的表面积为,对,故选:AD【点睛】本题考查立体几何中垂直,表面积,外接球的问题,属于难题11.正方体ABCD - A1B1C1D1的棱长为2, E、F、G分别为BC、CC1、BB1的中点,则( )A. 直线与直线AF垂直B. 直线A1G与平面AEF平行C. 平面截正方体所得的截面面积为D. 点C与点G到平面AEF的距离相等【答案】BC【解析】【分析】对选项A,取中点,则为在平面上的投影,由与不垂直,得与不垂直,故A错误.对选项B,取的中点,连接,易证平面平面,从而得到平

8、面,故B正确.对选项C,连接,得到平面为平面截正方体所得的截面,再计算其面积即可得到C正确,对选项D,利用反正法即可得到D错误.【详解】对选项A,如图所示:取中点,连接,.则为在平面上的投影,因为与不垂直,所以与不垂直,故A错误.对选项B,取的中点,连接,如图所示:因为,平面,平面,所以平面,因,平面,平面,所以平面,又因为平面,所以平面平面.因为平面,所以平面,故B正确.对选项C,连接,如图所示:因为,所以平面为平面截正方体所得的截面.,所以四边形为等腰梯形,高为,.故C正确.对选项D,连接交于,如图所示:假设点与点到平面的距离相等,即平面必过的中点,而不是的中点,则假设不成立,故D错误.故

9、选:BC【点睛】本题主要考查空间中直线与直线、直线与平面以及平面与平面的位置关系的判定和应用,同时考查学生空间想象力和思维能力,属于中档题.12.在中,D在线段上,且若,则( )A. B. 的面积为8C. 的周长为D. 为钝角三角形【答案】BCD【解析】【分析】由同角的三角函数关系即可判断选项A;设,则,在中,利用余弦定理求得,即可求得,进而求得,即可判断选项B;在中,利用余弦定理求得,进而判断选项C;由为最大边,利用余弦定理求得,即可判断选项D.【详解】因为,所以,故A错误;设,则,在中,解得,所以,所以,故B正确;因,所以,在中,解得,所以,故C正确;因为为最大边,所以,即为钝角,所以为钝

10、角三角形,故D正确.故选:BCD【点睛】本题考查利用余弦定理解三角形,考查三角形面积的公式的应用,考查判断三角形的形状.三、填空题13.已知,若与的夹角为钝角,则实数的取值范围为_.【答案】【解析】【分析】由题意得出且与不共线,利用向量的坐标运算可求出实数的取值范围.【详解】由于与的夹角为钝角,则且与不共线,解得且,因此,实数的取值范围是,故答案为:.【点睛】本题考查利用向量的夹角求参数,解题时要找到其转化条件,设两个非零向量与的夹角为,为锐角,为钝角.14.在九章算术中,将四个面都是直角三角形的四面体称之为鳖臑,在鳖臑中,平面,且有,则此鳖臑的外接球(均在球表面上)的直径为_;过的平面截球所

11、得截面面积的最小值为_.【答案】 (1). (2). 【解析】【分析】判断出鳖臑外接球的直径为,由此求得外接球的直径.根据球的截面的几何性质,求得过的平面截球所得截面面积的最小值.【详解】根据已知条件画出鳖臑,并补形成长方体如下图所示.所以出鳖臑外接球的直径为,且.过的平面截球所得截面面积的最小值的是以为直径的圆,面积为.故答案为:(1). (2). 【点睛】本小题主要考查几何体外接球有关计算,考查球的截面的性质,考查中国古代数学文化,考查空间想象能力,属于基础题.15.如图,为内一点,且,延长交于点,若,则实数的值为_.【答案】【解析】【分析】由,得,可得出,再利用、三点共线的向量结论得出,

12、可解出实数的值.【详解】由,得,可得出,由于、三点共线,解得,故答案为.【点睛】本题考查三点共线问题的处理,解题的关键就是利用三点共线的向量等价条件的应用,考查运算求解的能力,属于中等题.16.已知,向量的夹角为,则的最大值为_.【答案】【解析】【分析】将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.四、填空题17.已知:(1)若,求的坐标;(2)若与的夹角为120,求.【答案】(1)或.(2)【解析】试题分析:(1)

13、利用向量共线定理、数量积运算性质即可得出(2)利用数量积运算性质即可的试题解析:(1),与共线的单位向量为.,或.(2),.点睛:平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.18.如图,在四棱锥PABCD中,四边形ABCD为正方形,PA平面ABCD,E为PD的中点 求证:(1)PB平面AEC;(2)平面PCD平面PAD【答案】(1)详证见解析;(2)详证见解析.【解析】【分析】( 1)可通过连接交于,通过中位线证明和平行得证平

14、面( 2)可通过正方形得证,通过平面得证,然后通过线面垂直得证面面垂直【详解】( 1)证明: 连交于O, 因为四边形是正方形 ,所以 ,连,则是三角形的中位线, ,平面,平面 所以平面 . (2)因为平面 ,所以 , 因为是正方形,所以, 所以平面, 所以平面平面.【点睛】证明线面平行可通过线线平行得证,证明面面垂直可通过线面垂直得证19.已知的角、所对的边分别是、,设向量,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)首先根据题意得到,再利用正弦定理角化边公式即可得到答案.(2)首先根据题意得到,利用余弦定理得到,再计算的

15、面积即可.【详解】(1)因为,所以,即,所以,即为等腰三角形.(2)因为,所以,即.由余弦定理可知,即解方程得:(舍去)所以.【点睛】本题第一问考查正弦定理角化边公式,第二问考查余弦定理和正弦定理面积公式,同时考查了向量平行,垂直的坐标运算,属于简单题.20.在中,且的面积为(1)求a的值;(2)若D为BC上一点,且 ,求值从,这两个条件中任选一个,补充在上面问题中并作答【答案】(1);(2)选,;选,【解析】【分析】(1)利用三角形的面积公式得,再利用余弦定理,即可得答案;(2)当时,由正弦定理,可求得,再由,可求得答案;当时,由余弦定理和诱导公式,可求得答案;【详解】(1) 由于 ,所以,

16、由余弦定理 ,解得(2)当时,中,由正弦定理, 即,所以 因为,所以 所以, 即 当时,在中,由余弦定理知, 因为,所以, 所以, 所以 , 即【点睛】本题考查正余弦定理、三角形面积公式、诱导公式等知识的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.21.如图,在四棱锥P-ABCD中,PD平面ABCD,ABC=BCD=90,E为PB的中点(1)证明:CE面PAD.(2)若直线CE与底面ABCD所成的角为45,求四棱锥P-ABCD的体积【答案】(1)见解析(2)【解析】【分析】(1)取PA中点Q,连接QD,QE,可证四边形CDQE为平行四边形,从而CEQD,于是证

17、得线面平行;(2)连接BD,取BD中点O,连接EO,CO,可证EOPD,从而得到直线CE与底面ABCD所成的角,求得EO也即能求得PD,最终可得棱锥体积【详解】解法一:(1)取PA中点Q,连接QD,QE, 则QEAB,且QE=ABQECD,且QE=CD.即四边形CDQE平行四边形,CEQD.又CE平面PAD,QD平面PAD,CE平面PAD.(2)连接BD,取BD中点O,连接EO,CO则EOPD,且EO=PD. PD平面ABCD,EO平面ABCD. 则CO为CE在平面ABCD上的射影,即ECO为直线CE与底面ABCD所成的角,ECO=45 在等腰直角三角形BCD中,BC=CD=2,则BD=2,则

18、在RtECO中,ECO=45,EO=CO=BD=2PD=2E0=2, 四棱锥P-ABCD的体积为.解法二:(1)取AB中点Q,连接QC,QE则QEPAPA平面PAD,QE平面PADQE平面PAD, 又AQ=AB=CD,AQCD,四边形AQCD平行四迹形,则CQDADA平面PAD,CQ平面PAD,CQ平面PAD, (QE平面PAD.CQ平面PAD,证明其中一个即给2分)又QE平面CEQ,CQ平面CEQ,QECQ=Q,平面CEQ平面PAD, 又CE平面CQ,CE平面PAD. (2)同解法一.【点睛】本题考查线面平行的判定,考查棱锥的体积,考查直线与平面所成的角涉及到直线与平面所成的角,必须先证垂直

19、(或射影),然后才有直线与平面所成的角22.如图半圆的直径为4,为直径延长线上一点,且,为半圆周上任一点,以为边作等边(、按顺时针方向排列)(1)若等边边长为,试写出关于的函数关系;(2)问为多少时,四边形的面积最大?这个最大面积为多少?【答案】(1);(2)时,四边形OACB的面积最大,其最大面积为【解析】【分析】(1)根据余弦定理可求得;(2)先表示出ABC的面积及OAB的面积,进而表示出四边形OACB的面积,并化简函数的解析式为正弦型函数的形式,再结合正弦型函数最值的求法进行求解【详解】(1)由余弦定理得则 (2)四边形OACB的面积OAB的面积+ABC的面积则ABC的面积OAB的面积四边形OACB的面积当,即时,四边形OACB的面积最大,其最大面积为【点睛】本题考查利用正余弦定理求解面积最值,其中准确列出面积表达式是关键,考查化简求值能力,是中档题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3