1、第1课时二次根式的概念1了解二次根式的概念;(重点)2理解二次根式有意义的条件;(重点)3理解(a0)是一个非负数,并会应用(a0)的非负性解决实际问题(难点)一、情境导入1小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2已知圆的面积是6,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】 二次根式的识别 (2015安顺期末)下列各式:; ,其中二次根式的个数有()A1个 B2个 C3个 D4个解析:根据二次根式的概念可直接判断,只有满足题意故选B.方法总结:判断一个式
2、子是否为二次根式,要看式子是否同时具备两个特征:含有二次根号“”;被开方数为非负数两者缺一不可【类型二】 二次根式有意义的条件 代数式有意义,则x的取值范围是()Ax1且x1 Bx1Cx1且x1 Dx1解析:根据题意可知x10且x10,解得x1且x1.故选A.方法总结:(1)要使二次根式有意义,必须使被开方数为非负数,而不是所含字母为非负数;(2)若式子中含有多个二次根式,则字母的取值必须使各个被开方数同时为非负数;(3)若式子中含有分母,则字母的取值必须使分母不为零探究点二:利用二次根式的非负性求值【类型一】 利用被开方数的非负性求字母的值 (1)已知a,b满足|b1|0,求2ab的值;(2
3、)已知实数a,b满足a3,求a,b的值解析:根据二次根式的被开方数是非负数及绝对值的意义求值即可解:(1)由题意知得2a8,b1,则2ab9;(2)由题意知解得b2.所以a0033.方法总结:当几个非负数的和为0时,这几个非负数均为0;当题目中,同时出现和时(即二次根式下的被开方数互为相反数),则可得a0.【类型二】 与二次根式有关的最值问题 当x_时,3的值最小,最小值为_解析:由二次根式的非负性知0,当0即x时,3的值最小,此时最小值为3.故答案为,3.方法总结:对于二次根式0(a0),可知其有最小值0.三、板书设计本节课的内容是在我们已学过的平方根、算术平方根知识的基础上,进一步引入二次根式的概念教学过程中,应鼓励学生积极参与,并让学生探究和总结二次根式在实数范围内有意义的条件。