ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:132.73KB ,
资源ID:466586      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-466586-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年高考数学一轮复习 解题技巧方法 第一章 第14节 洛必达法则(学生版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年高考数学一轮复习 解题技巧方法 第一章 第14节 洛必达法则(学生版).docx

1、洛必达法则知识与方法在有的问题中,我们要研究函数的图象,但函数存在没有定义的点,代入解析式计算函数在该点处的函数值时,会出现诸如、的不定式,从而无法用初等的方法研究函数在该点附近的图象走势.例如,在研究函数在附近的图象时,初等代数的方法就会显得束手无策,此时,我们需要用到高等代数中的一个重要定理:洛必达法则.1洛必达法则:设函数与在上存在导数,且或,其中a为有限值或无穷大,则(其中表示从的右侧无限逼近,类似的,表示从的左侧无限逼近)类似的,对于左侧极限,也有相应的结论:洛必达法则给了我们一种求极限的简便方法,在高中数学的范畴,一般来说,洛必达法则的条件都能够满足,因此,如果遇到型、型的不定式,

2、就可以把分子分母分别求导,再求极限,所得的结果与原来的极限值是相等的.下面我们来考虑时,式的极限值,注意到该式的分子,分母,属于型的不定式,分子分母在附近都能求导,所以两者相除所得的极限值等于分子分母分别求导之后再相除求极限所得值,即.如果我们要作出函数的图象,可以先求导研究其单调性,再作草图.易求得,令,则,显然,所以在上单调递增,在上单调递减;从而,当且仅当时取等号,故,所以在和上均为减函数,虽然在处没有定义,但我们已经求出了它在时的极限,再求出当、时的极限值,据此就可以作出函数的草图,如下图所示.洛必达法则在高等代数中的应用非常广泛,在高中数学里,我们也可以用它来解决一些简单的求极限问题

3、.下面通过一些实例来感受洛必达法则的作用.提醒:若用了一次洛必达法则后,仍然满足洛必达法则的使用条件,那么可以再用洛必达法则,直到不满足洛必达法则的使用条件为止;在解答题中使用洛必达法则,存在被扣分的风险,所以本节的例题和强化训练,我们都只选取小题.解答题中使用洛必达法则的方法和小题中类似;同学们提前了解洛必达法则,主要目的是学习一个新的研究函数的工具,能够站在更高处,更为透彻地看待问题,不应该是为了用它投机取巧,反而忽略了高中数学中本该重点学习的初等方法.典型例题【例1】若函数有2个零点,则实数a的取值范围是_.【例2】若当时,恒成立,则实数a的取值范围是_.强化训练1.()若函数有且仅有3个零点,则实数的取值范围是_.2.()若当时,不等式恒成立,则实数a的取值范围是_.3.()若当时,恒成立,则实数a的取值范围是_.4.()不等式对任意的成立,则实数a的取值范围是_.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1