1、法拉第电磁感应定律 01教学目标:1熟练掌握法拉第电磁感应定律,及各种情况下感应电动势的计算方法。2知道自感现象及其应用,日光灯教学重点:法拉第电磁感应定律教学难点:法拉第电磁感应定律的应用教学方法:讲练结合,计算机辅助教学教学过程:一、法拉第电磁感应定律1.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,在国际单位制中可以证明其中的k=1,所以有。对于n匝线圈有。在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推出感应电动势的大小是:E=BLvsin(是B与v之间的夹角)。【例1】如图所示,长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的
2、匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v匀速拉出磁场的过程中,拉力F大小; 拉力的功率P; 拉力做的功W; 线圈中产生的电热Q ;通过线圈某一截面的电荷量q 。FL1L2Bv解:这是一道基本练习题,要注意要注意所用的边长究竟是L1还是L2 ,还应该思考一下所求的各物理量与速度v之间有什么关系。 与v无关Ra bm L特别要注意电热Q和电荷q的区别,其中与速度无关!(这个结论以后经常会遇到)。【例2】如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。磁感应强度为B的匀强磁场方向垂直于纸面向外。金属棒ab的质量为m,与导轨接触良好,不计摩擦。从静止
3、释放后ab保持水平而下滑。试求ab下滑的最大速度vm解:释放瞬间ab只受重力,开始向下加速运动。随着速度的增大,感应电动势E、感应电流I、安培力F都随之增大,加速度随之减小。当F增大到F=mg时,加速度变为零,这时ab达到最大速度。 由,可得点评:这道题也是一个典型的习题。要注意该过程中的功能关系:重力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。这时重力的功率等于电功率也等于热功率。baB
4、L1L2进一步讨论:如果在该图上端电阻右边安一只电键,让ab下落一段距离后再闭合电键,那么闭合电键后ab的运动情况又将如何?(无论何时闭合电键,ab可能先加速后匀速,也可能先减速后匀速,但最终稳定后的速度总是一样的)。【例3】 如图所示,U形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为,它们围成的矩形边长分别为L1、L2,回路的总电阻为R。从t=0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B=kt,(k0)那么在t为多大时,金属棒开始移动?高考资源网解:由= kL1L2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于安培力F=BILB=kt
5、t,随时间的增大,安培力将随之增大。当安培力增大到等于最大静摩擦力时,ab将开始向左移动。这时有:2.转动产生的感应电动势o av转动轴与磁感线平行。如图磁感应强度为B的匀强磁场方向垂直于纸面向外,长L的金属棒oa以o为轴在该平面内以角速度逆时针匀速转动。求金属棒中的感应电动势。在用导线切割磁感线产生感应电动势的公式时注意其中的速度v应该是平均速度,即金属棒中点的速度。 L1L2Ba db c线圈的转动轴与磁感线垂直。如图矩形线圈的长、宽分别为L1、L2,所围面积为S,向右的匀强磁场的磁感应强度为B,线圈绕图示的轴以角速度匀速转动。线圈的ab、cd两边切割磁感线,产生的感应电动势相加可得E=B
6、S。如果线圈由n匝导线绕制而成,则E=nBS。从图示位置开始计时,则感应电动势的即时值为e=nBScost 。该结论与线圈的形状和转动轴的具体位置无关(但是轴必须与B垂直)。yoxBab实际上,这就是交流发电机发出的交流电的即时电动势公式。【例4】 如图所示,xoy坐标系y轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B,一个围成四分之一圆形的导体环oab,其圆心在原点o,半径为R,开始时在第一象限。从t=0起绕o点以角速度逆时针匀速转动。试画出环内感应电动势E随时间t而变的函数图象(以顺时针电动势为正)。EtoT 2TEm解:开始的四分之一周期内,oa、ob中的感应电动势方
7、向相同,大小应相加;第二个四分之一周期内穿过线圈的磁通量不变,因此感应电动势为零;第三个四分之一周期内感应电动势与第一个四分之一周期内大小相同而方向相反;第四个四分之一周期内感应电动势又为零。感应电动势的最大值为Em=BR2,周期为T=2/,图象如右。3.电磁感应中的能量守恒a bd c只要有感应电流产生,电磁感应现象中总伴随着能量的转化。电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要的。要牢固树立起能量守恒的思想。高考资源网【例5】 如图所示,矩形线圈abcd质量为m,宽为d,在竖直平面内由静止自由下落。其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d,线圈ab边刚进入
8、磁场就开始做匀速运动,那么在线圈穿越磁场的全过程,产生了多少电热?解:ab刚进入磁场就做匀速运动,说明安培力与重力刚好平衡,在下落2d的过程中,重力势能全部转化为电能,电能又全部转化为电热,所以产生电热Q =2mgd。Ba db c【例6】如图所示,水平面上固定有平行导轨,磁感应强度为B的匀强磁场方向竖直向下。同种合金做的导体棒ab、cd横截面积之比为21,长度和导轨的宽均为L,ab的质量为m ,电阻为r,开始时ab、cd都垂直于导轨静止,不计摩擦。给ab一个向右的瞬时冲量I,在以后的运动中,cd的最大速度vm、最大加速度am、产生的电热各是多少?解:给ab冲量后,ab获得速度向右运动,回路中产生感应电流,cd受安培力作用而加速,ab受安培力而减速;当两者速度相等时,都开始做匀速运动。所以开始时cd的加速度最大,最终cd的速度最大。全过程系统动能的损失都转化为电能,电能又转化为内能。由于ab、cd横截面积之比为21,所以电阻之比为12,根据Q=I 2RtR,所以cd上产生的电热应该是回路中产生的全部电热的2/3。又根据已知得ab的初速度为v1=I/m,因此有: ,解得。最后的共同速度为vm=2I/3m,系统动能损失为EK=I 2/ 6m,其中cd上产生电热Q=I 2/ 9m