ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:389KB ,
资源ID:461544      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-461544-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020高考人教版数学(理)总复习练习:第七章 立体几何 课时作业48 WORD版含解析.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020高考人教版数学(理)总复习练习:第七章 立体几何 课时作业48 WORD版含解析.DOC

1、课时作业48利用向量求空间角1在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为(B)A. B.C. D.解析:以A为原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系A-xyz,设棱长为1,则A1(0,0,1),E,D(0,1,0),(0,1,1),设平面A1ED的一个法向量为n1(1,y,z)则有即n1(1,2,2)平面ABCD的一个法向量为n2(0,0,1),cosn1,n2,即所成的锐二面角的余弦值为.2(2019大同模拟)设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距

2、离是(D)A. B.C. D.解析:如图,以点D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立坐标系,则D(0,0,0),D1(0,0,2),A1(2,0,2),B(2,2,0),(2,0,0),(2,2,0),(2,0,2),设平面A1BD的一个法向量n(x,y,z),则令z1,得n(1,1,1)D1到平面A1BD的距离d.3(2018全国卷)已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为(A)A. B.C. D.解析:由正方体的性质及题意可得,正方体共顶点的三条棱所在直线与平面所成的角均相等如图,正方体ABCD-A1B1C1

3、D1中,易知棱AB,AD,AA1所在直线与平面A1BD所成的角均相等,所以平面A1BD,当平面趋近点A时,截面图形的面积趋近于0;当平面经过正方体的中心O时,截面图形为正六边形,其边长为,截面图形的面积为62;当平面趋近于C1时,截面图形的面积趋近于0,所以截面图形面积的最大值为,故选A.4已知三棱锥P-ABC的所有顶点都在表面积为16的球O的球面上,AC为球O的直径当三棱锥P-ABC的体积最大时,二面角P-AB-C的大小为,则sin等于(C)A. B.C. D.解析:如图,设球O的半径为R,由4R216,得R2,设点P到平面ABC的距离为d,则0d2,因为AC为球的直径,所以AB2BC2AC

4、216,则V三棱锥P-ABCABBCd2,当且仅当ABBC2,d2时,V三棱锥P-ABC取得最大值,此时平面PAC平面ABC,连接PO,因为POAC,平面PAC平面ABCAC,PO平面PAC,所以PO平面ABC,过点P作PDAB于D,连接OD,因为ABPO,ABPD,POPDP,所以AB平面POD,则ABOD,所以PDO为二面角P-AB-C的平面角,因为ODBC,所以PD,则sinsinPDO,故选C.5如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是正方形A1B1C1D1和正方形ADD1A1的中心,则EF和CD所成的角的大小是45.解析:以D为原点,分别以DA、DC、DD1所在直

5、线为x轴、y轴、z轴建立如图所示的空间直角坐标系D-xyz,设正方体的棱长为1,则D(0,0,0),C(0,1,0),E,F,(0,1,0),cos,135,异面直线EF和CD所成的角的大小是45.6如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点设异面直线EM与AF所成的角为,则cos的最大值为.解析:建立空间直角坐标系如图所示设AB1,则,E.设M(0,y,1)(0y1),则.,cos.则21.令8y1t,1t9,则,当且仅当t1时取等号cos,当且仅当y0时取等号7如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面A

6、BCD,E为PD的中点(1)证明:PB平面AEC;(2)设二面角D-AE-C为60,AP1,AD,求三棱锥E-ACD的体积解:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EOPB.又因为EO平面AEC,PB平面AEC,所以PB平面AEC.(2)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,的方向为x轴的正方向,|为单位长,建立空间直角坐标系A-xyz,则D(0,0),E,.设B(m,0,0)(m0),则C(m,0),(m,0)设n1(x,y,z)为平面ACE的法向量,则即可取n1.又n2(1,

7、0,0)为平面DAE的法向量,由题设得|cosn1,n2|,即 ,解得m.因为E为PD的中点,所以三棱锥E-ACD的高为.三棱锥E-ACD的体积V.8(2019江西六校联考)在如图所示的几何体中,四边形ABCD为平行四边形,ABD90,EB平面ABCD,EFAB,AB2,EB,EF1,BC,且M是BD的中点(1)求证:EM平面ADF;(2)求二面角A-FD-B的余弦值的大小解:(1)证法一:取AD的中点N,连接MN,NF.在DAB中,M是BD的中点,N是AD的中点,所以MNAB,MNAB,又因为EFAB,EFAB,所以MNEF且MNEF.所以四边形MNFE为平行四边形,所以EMFN,又因为FN

8、平面ADF,EM平面ADF,故EM平面ADF.证法二:因为EB平面ABD,ABBD,故以B为原点,建立如图所示的空间直角坐标系B-xyz.由已知可得,(3,2,0),(0,1,),设平面ADF的法向量是n(x,y,z)由得令y3,则n(2,3,)又因为n0,所以n,又EM平面ADF,故EM平面ADF.(2)由(1)中证法二可知平面ADF的一个法向量是n(2,3,)易得平面BFD的一个法向量是m(0,1)所以cosm,n,又二面角A-FD-B为锐角,故二面角A-FD-B的余弦值大小为.9(2019河南郑州一模)如图所示,在四棱锥P-ABCD中,PA平面ABCD,DABDCB,E为线段BD上的一点

9、,且EBEDECBC,连接CE并延长交AD于F.(1)若G为PD的中点,求证:平面PAD平面CGF;(2)若BC2,PA3,求平面BCP与平面DCP所成锐二面角的余弦值解:(1)证明:在BCD中,EBEDECBC,故BCD,CBECEB,连接AE,DABDCB,EABECB,从而有FEDBECAEB,AECEDE.AEFFED.故EFAD,AFFD.又PGGD,FGPA.又PA平面ABCD,故GF平面ABCD,GFAD,又GFEFF,故AD平面CFG.又AD平面PAD,平面PAD平面CGF.(2)以点A为坐标原点建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(3,0),

10、D(0,2,0),P(0,0,3)故(1,0),(3,3),(3,0)设平面BCP的一个法向量为n1(1,y1,z1),则解得即n1.设平面DCP的一个法向量为n2(1,y2,z2),则解得即n2(1,2)从而平面BCP与平面DCP所成锐二面角的余弦值为.10(2017全国卷)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,ABBCAD,BADABC90,E是PD的中点(1)证明:直线CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45,求二面角M-AB-D的余弦值解:(1)取PA的中点F,连接EF,BF.因为E是PD的中点,所以EFAD,EFAD

11、.由BADABC90得BCAD,又BCAD,所以EF綊BC,四边形BCEF是平行四边形,CEBF,又BF平面PAB,CE平面PAB,故CE平面PAB.(2)由已知得BAAD,以A为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),(1,0,),(1,0,0)设M(x,y,z)(0x1),则(x1,y,z),(x,y1,z)因为BM与底面ABCD所成的角为45,而n(0,0,1)是底面ABCD的法向量,所以|cos,n|sin 45,即(x1)2y2z20.又M在棱PC上,设,则x,y1,z.

12、由解得(舍去),或所以M,从而.设m(x0,y0,z0)是平面ABM的法向量,则即所以可取m(0,2)于是cosm,n.易知所求二面角为锐角因此二面角M-AB-D的余弦值为.11如图,在四棱锥P-ABCD中,ADBC,ADCPAB90,BCCDAD,E为棱AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45,求直线PA与平面PCE所成角的正弦值解:(1)在梯形ABCD中,AB与CD不平行如图,延长AB,DC,相交于点M(M平面PAB),点M即为所求的一个点理由如下:由已知,BCED,且BCED.所

13、以四边形BCDE是平行四边形,从而CMEB.又EB平面PBE,CM平面PBE,所以CM平面PBE.(说明:延长AP至点N,使得APPN,则所找的点可以是直线MN上任意一点)(2)解法一:由已知,CDPA,CDAD,PAADA,所以CD平面PAD.从而CDPD.所以PDA是二面角P-CD-A的平面角所以PDA45.设BC1,则在RtPAD中,PAAD2.过点A作AHCE,交CE的延长线于点H,连接PH.易知PA平面ABCD,又CE平面ABCD,从而PACE.于是CE平面PAH.所以平面PCE平面PAH.过A作AQPH于Q,则AQ平面PCE.所以APH是PA与平面PCE所成的角在RtAEH中,AE

14、H45,AE1,所以AH.在RtPAH中,PH,所以sinAPH.解法二:由已知,CDPA,CDAD,PAADA,所以CD平面PAD.于是CDPD.从而PDA是二面角P-CD-A的平面角所以PDA45.由PAAB,可得PA平面ABCD.设BC1,则在RtPAD中,PAAD2.作AyAD,以A为原点,以,的方向分别为x轴、z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以(1,0,2),(1,1,0),(0,0,2)设平面PCE的法向量n(x,y,z),由得设x2,解得n(2,2,1)设直线PA与平面PCE所成角为

15、,则sin.所以直线PA与平面PCE所成角的正弦值为.12(2019江西南昌二中月考)如图,在等腰梯形ABCD中,ABC60,CD2,AB4,点E为AB的中点,现将该梯形中的三角形EBC沿线段EC折起,形成四棱锥B-AECD.(1)在四棱锥B-AECD中,求证:ADBD;(2)若平面BEC与平面AECD所成二面角的平面角为120,求直线AE与平面ABD所成角的正弦值解:(1)证明:由三角形BEC沿线段EC折起前,ABC60,CD2,AB4,点E为AB的中点,得三角形BEC沿线段EC折起后,四边形AECD为菱形,边长为2,DAE60,如图,取EC的中点F,连接DF,BF,DE,BEC和DEC均为

16、正三角形,ECBF,ECDF, 又BFDFF,EC平面BFD,ADEC,AD平面BFD,BD平面BFD,ADBD.(2)以F为坐标原点,建立如图的空间直角坐标系,由EC平面BFD,知z轴在平面BFD内,BFEC,DFEC,BFD为平面BEC与平面AECD所成二面角的平面角,BFD120,BFz30,又BF,点B的横坐标为,点B的竖坐标为.因D(,0,0),E(0,1,0),A(,2,0),B,故(,1,0),(0,2,0)设平面ABD的法向量为n(x,y,z),得令x1,得y0,z,平面ABD的一个法向量为n(1,0,),cos,n,直线AE与平面ABD所成角为锐角,直线AE与平面ABD所成角的正弦值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3