ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:7.75MB ,
资源ID:461237      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-461237-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京市2020届高三高考数学预测卷 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

北京市2020届高三高考数学预测卷 WORD版含解析.doc

1、北京高考压轴卷数学一、选择题(本大题共10小题每小题45分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足,则( )A. B. C. D. 【答案】A【解析】【分析】由已知得,根据复数的除法法则,求出的实部和虚部,即可求解.【详解】,.故选:A.【点睛】本题考查复数的代数运算以及复数模长,属于基础题.2.设集合,则( )A. B. C. D. 【答案】B【解析】【分析】先解不等式得集合,再求出的补集,最后根据交集的定义求结果.【详解】由,得或,即或,又.故选:B.【点睛】本题考查了一元二次不等式的解法,集合的交集、补集的运算,是基础题.3.已知定义域为奇函数满足,

2、且当时,则( )A. B. C. D. 【答案】B【解析】【分析】根据题意可知函数是以为周期的函数,从而可得,再根据函数为奇函数可得,将代入表达式即可求解.【详解】由满足,所以函数的周期,又因为函数为奇函数,且当时,所以.故选:B【点睛】本题考查了利用函数的周期性、奇偶性求函数值,属于基础题.4.函数图象的大致形状是( )A. B. C. D. 【答案】B【解析】【分析】利用奇偶性可排除A、C;再由的正负可排除D.【详解】,故为奇函数,排除选项A、C;又,排除D,选B.故选:B.【点睛】本题考查根据解析式选择图象问题,在做这类题时,一般要结合函数的奇偶性、单调性、对称性以及特殊点函数值来判断,

3、是一道基础题.5.已知坐标原点到直线的距离为,且直线与圆相切,则满足条件的直线有( )条A. B. C. D. 【答案】A【解析】【分析】设出直线:,再根据点到直线的距离为和直线与圆相切列方程组成,解得,即可求解.【详解】显然直线有斜率,设:,则,即,又直线与圆相切, 联立,所以直线的方程为.故选:A【点睛】本题考查了直线与圆相切的切线问题、点到直线的距离公式,属于基础题.6.函数的单调递增区间是( )A. B. C. D. 【答案】C【解析】【分析】令,求解即得【详解】令因此 故函数的单调递增区间是故选:C【点睛】本题考查了正弦型函数的单调性,考查了学生综合分析,数学运算的能力,属于基础题.

4、7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 20B. 10C. 30D. 60【答案】B【解析】【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:;底面面积:三棱锥体积:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.8.已知点在抛物线C:的准线上,记C的焦点为F,则直线AF的斜率为( )A. B. C. D. 【答案】C【解析】试题分析:由已知得,抛物线的准线方程为,且过点,故,则,则直线AF的斜率,选C考点:1、抛物线的标准方程和简单几何性质;2

5、、直线的斜率9.已知,则“”是“”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件【答案】C【解析】【分析】根据向量的垂直关系,可得,简单计算,可得结果.【详解】由,则又,所以若,且,所以,则所以“”是“”的充要条件故选:C【点睛】本题考查向量的垂直的数量积表示以及计算,同时考查了充分、必要条件,识记概念与计算公式,属基础题.10.已知随机变量的分布列,则下列说法正确的是( )A. 存在x,y(0,1),E()B. 对任意x,y(0,1),E()C. 对任意x,y(0,1),D()E()D. 存在x,y(0,1),D()【答案】C【解析】【分析】表示出期望与

6、方差,利用基本不等式证明不等关系。【详解】解:依题意可得,因为所以即故,错误;即,故成立;故错误故选:【点睛】本题考查简单随机变量的分布列中期望和方差的运算,属于难题。二填空题(本大题共5小题每小题5分,共25分)11.已知曲线的一条切线的斜率是3,则该切点的横坐标为_.【答案】2【解析】【分析】根据曲线的切线斜率即对应的函数在切点处的导数值,令导数,解得的值,即为得出结果【详解】解:由于,则,由导数的几何意义可知,曲线的切线斜率即对应的函数在切点处的导数值,曲线的一条切线斜率是3,令导数,可得,所以切点的横坐标为2.故答案为:2【点睛】本题考查导数的几何意义和曲线上某点处的切线斜率的意义,属

7、于基础题12.函数的最小正周期等于_.【答案】【解析】【分析】利用降幂公式整理化简,再由三角函数的最小正周期求得答案.【详解】因为函数故最小正周期等于.故答案为:【点睛】本题考查求三角函数的最小正周期,属于基础题.13.在中,若,,求的面积 【答案】或【解析】【分析】由题意首先由余弦定理求得BC的值,然后利用面积公式求解ABC的面积即可.【详解】在中,设,由余弦定理可得,或当时,的面积为,当时,的面积为,故答案为或【点睛】本题主要考查余弦定理解三角形,三角形面积公式及其应用等知识,意在考查学生的转化能力和计算求解能力.14.已知an是各项均为正数的等比数列,a11,a3100,则an的通项公式

8、an_;设数列lgan的前n项和为Tn,则Tn_.【答案】 (1). 10n1 (2). 【解析】【分析】先由a11,a3100求出公比q,再求an与lgan,最后求Tn.【详解】设等比数列an的公比为q,由题知q0.a11,a3100,q10,an10n1;lganlg10n1n1,Tn.故答案为:(1). 10n1 (2). 【点睛】本题主要考查等比数列、等差数列的通项公式与前n项和的求法,属于基础题.15.已知函数,下列命题正确的有_(写出所有正确命题的编号)是奇函数;在上是单调递增函数;方程有且仅有1个实数根;如果对任意,都有,那么的最大值为2.【答案】【解析】 根据题意,依次分析四个

9、命题:对于中,定义域是,且是奇函数,所以是正确的;对于中,若,则,所以的递增,所以是正确的;对于中,令,令可得,即方程有一根,则方程有一根之间, 所以是错误的;对于中,如果对于任意,都有,即恒成立,令,且,若恒成立,则必有恒成立,若,即恒成立,而,若有,所以是正确的,综上可得正确.三、解答题(本大题共6小题,共85分解答题应写出文字说明、证明过程或演算步骤)16.已知函数(k为常数,且)(1)在下列条件中选择一个_使数列是等比数列,说明理由;数列是首项为2,公比为2的等比数列;数列是首项为4,公差为2的等差数列;数列是首项为2,公差为2的等差数列的前n项和构成的数列(2)在(1)的条件下,当时

10、,设,求数列的前n项和.【答案】(1),理由见解析;(2)【解析】分析】(1)选,由和对数的运算性质,以及等比数列的定义,即可得到结论;(2)运用等比数列的通项公式可得,进而得到,由数列的裂项相消求和可得所求和.【详解】(1)不能使成等比数列.可以:由题意,即,得,且,.常数且,为非零常数,数列是以为首项,为公比的等比数列(2)由(1)知,所以当时,.因为,所以,所以,.【点睛】本题考查等比数列的定义和通项公式,数列的裂项相消求和,考查化简运算能力,属于中档题.17.在四棱锥中,平面,底面四边形为直角梯形,为中点(1)求证:;(2)求异面直线与所成角的余弦值【答案】(1)详见解析;(2)【解析

11、】【分析】(1)以为原点,分别以,为轴,轴,轴,建立空间直角坐标系,计算得,即可证明结论;(2)先求出,再利用向量夹角公式即可得出.【详解】(1)由题意在四棱锥中,平面,底面四边形为直角梯形,以为原点,分别以,为轴,轴,轴,建立空间直角坐标系,则,因为为中点,所以,所以,所以,所以(2)由(1)得,所以与所成角的余弦值为【点睛】本题考查了异面直线所成的角、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于基础题18.已知函数()求函数的单调区间;()当时,若在上有零点,求实数的取值范围.【答案】()见解析()【解析】试题分析:(),结合定义域讨论导数的正负求单调区间即可;()当时,的

12、单调递增区间是,单调递减区间是.所以在上有零点的必要条件是,得,讨论和时函数单调性求解参数范围即可.试题解析:解:()函数的定义域为,.由得或.当时,在上恒成立,所以的单调递减区间是,没有单调递增区间.当时,的变化情况如下表:所以的单调递增区间是,单调递减区间是.当时,的变化情况如下表:所以的单调递增区间是,单调递减区间是.()当时,的单调递增区间是,单调递减区间是.所以在上有零点的必要条件是,即,所以.而,所以.若,在上是减函数,在上没有零点.若,在上是增函数,在上是减函数,所以在上有零点等价于,即,解得.综上所述,实数的取值范围是.点睛:根据函数零点求参数取值,也是高考经常涉及的重点问题,

13、(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.19.自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:20以下70以上使用人数312176420未使用人数003143630()现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;()从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学

14、期望;()为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.【答案】;()详见解析;()2200【解析】【分析】()随机抽取的100名顾客中,年龄在30,50)且未使用自由购的有3+1417人,由概率公式即可得到所求值;()所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望;()随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值【详解】()在随机抽取的100名顾客中,年龄在30,50)且未使用自由购的共有3+14=17人,所以,随机抽取1名顾客,估计该顾客年龄在30,50

15、)且未使用自由购的概率为()所有可能取值为1,2,3,,.所以的分布列为123所以的数学期望为.()在随机抽取的100名顾客中,使用自由购的共有人,所以该超市当天至少应准备环保购物袋的个数估计为.【点睛】本题考查统计表,随机变量X的分布列及数学期望,以及古典概型,是一道综合题20.已知椭圆(1)求椭圆的标准方程和离心率;(2)是否存在过点的直线与椭圆相交于,两点,且满足若存在,求出直线的方程;若不存在,请说明理由【答案】(1),;(2)存在,7x+30或7x+30【解析】【分析】(1)将椭圆方程化为标准方程,可得a,b,c,由离心率公式可得所求值;(2)假设存在过点P(0,3)的直线l与椭圆C

16、相交于A,B两点,且满足,可设直线l的方程为xm(y3),联立椭圆方程,消去x可得y的二次方程,运用韦达定理和判别式大于0,再由向量共线的坐标表示,化简整理解方程,即可判断是否存在这样的直线【详解】(1)由,得,进而,;(2)假设存在过点P(0,3)的直线l与椭圆C相交于A,B两点,且满足,可设直线l的方程为xm(y3),联立椭圆方程x2+2y24,可得(2+m2)y26m2y+9m240,36m44(2+m2)(9m24)0,即m2,设A(x1,y1),B(x2,y2),可得y1+y2,y1y2,由,可得(x2,y23)2(x1,y13),即y232(y13),即y22y13,将代入可得3y

17、13,y1(2y13),消去y1,可得,解得m2,所以,故存在这样的直线l,且方程为7xy+30或7x+y30【点睛】本题考查椭圆的方程和性质,考查直线方程和椭圆方程联立,运用韦达定理,同时考查向量共线的坐标表示,考查化简运算能力和推理能力,属于中档题21.对于nN*(n2),定义一个如下数阵:,其中对任意的1in,1jn,当i能整除j时,aij1;当i不能整除j时,aij0设()当n6时,试写出数阵A66并计算;()若x表示不超过x的最大整数,求证:;()若,求证:g(n)1f(n)g(n)+1【答案】(), ()见解析()见解析【解析】【分析】()依题意可得, ()由题意可知,t(j)是数

18、阵Ann的第j列的和,可得是数阵Ann所有数的和而数阵Ann所有数的和也可以考虑按行相加对任意的1in,不超过n的倍数有1i,2i,得数阵Ann的第i行中有个1,其余是0,即第i行的和为从而得到结果()由x的定义可知,得进而再考查定积分,根据曲边梯形的面积的计算即可证得结论【详解】()依题意可得, ()由题意可知,t(j)是数阵Ann的第j列的和,因此是数阵Ann所有数的和而数阵Ann所有数的和也可以考虑按行相加对任意的1in,不超过n的倍数有1i,2i,因此数阵Ann的第i行中有个1,其余是0,即第i行的和为所以()证明:由x的定义可知,所以所以考查定积分,将区间1,n分成n1等分,则的不足近似值为,的过剩近似值为 所以所以g(n)所以g(n)1g(n)+1所以g(n)1f(n)g(n)+1【点睛】本题主要考查高阶矩阵、矩阵的应用、定积分等基础知识,考查运算求解能力,属于基础题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3