收藏 分享(赏)

2021-2022高中数学人教A版选修2-1教案:3-1-2空间向量的数乘运算 (系列二) WORD版含解析.doc

上传人:a**** 文档编号:461229 上传时间:2025-12-08 格式:DOC 页数:4 大小:444KB
下载 相关 举报
2021-2022高中数学人教A版选修2-1教案:3-1-2空间向量的数乘运算 (系列二) WORD版含解析.doc_第1页
第1页 / 共4页
2021-2022高中数学人教A版选修2-1教案:3-1-2空间向量的数乘运算 (系列二) WORD版含解析.doc_第2页
第2页 / 共4页
2021-2022高中数学人教A版选修2-1教案:3-1-2空间向量的数乘运算 (系列二) WORD版含解析.doc_第3页
第3页 / 共4页
2021-2022高中数学人教A版选修2-1教案:3-1-2空间向量的数乘运算 (系列二) WORD版含解析.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.1.2空间向量的数乘运算课题: 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:1理解共线向量定理和共面向量定理及它们的推论;2掌握空间直线、空间平面的向量参数方程和线段中点的向量公式批 注教学重点:共线、共面定理及其应用教学难点:共线、共面定理及其应用教学用具: 多媒体,三角板教学方法: 讨论,分析教学过程:1共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。读作:平行于,记作:2共线向量定理:对空间任意两个向量的充要条件是存在实数,使(唯一)推论:如果为经过已知点,且平行于已知向量的

2、直线,那么对任一点,点在直线上的充要条件是存在实数,满足等式,其中向量叫做直线的方向向量。在上取,则式可化为或当时,点是线段的中点,此时和都叫空间直线的向量参数方程,是线段的中点公式3向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的4共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有上面式叫做平面的向量表达式(三)例题分析:例1已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一

3、定共面?解:由题意:,即,所以,点与共面说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算【练习】:对空间任一点和不共线的三点,问满足向量式 (其中)的四点是否共面?解:,点与点共面例2已知,从平面外一点引向量,(1)求证:四点共面;(2)平面平面解:(1)四边形是平行四边形,共面;(2),又,所以,平面平面五、课堂练习:课本第89页练习第1、2、3题六、课堂小结:1共线向量定理和共面向量定理及其推论;2空间直线、平面的向量参数方程和线段中点向量公式七、作业:1已知两个非零向量不共线,如果,求证:共面2已知,若,求实数的值。3如图,分别为正方体的棱的中点,求证:(1)四点共面;(2)平面平面4已知分别是空间四边形边的中点,(1)用向量法证明:四点共面;(2)用向量法证明:平面教学后记:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1