1、专练21两角和与差的正弦、余弦、正切公式命题范围:两角和与差的正弦、余弦、正切公式基础强化一、选择题1sin20cos10cos160sin10()AB.CD.2已知tan2,则tan()A.B.C.D33若sin,则cos2()A.B.CD42021唐山摸底cos105cos15()A.BC.D5.()A.B.C.D162021商丘一中测试已知sincos,则cos()AB.CD.7已知AB45,则(1tanA)(1tanB)的值是()A16B8C4D282021福州一中测试已知cos,cos(),且0,则等于()A.B.C.D.92020全国卷已知2tantan7,则tan()A2B1C1
2、D2二、填空题10已知,则sin的值是_112021湖南师大附中测试已知cossin,则sin_.12已知tan,则tan_.能力提升132021保定九校联考设为第二象限角,若tan,则sincos()A.BC1D114已知锐角,满足sin,cos,则等于()A.B.或C.D2k(kZ)15已知sincos,cossin,则sin()_.16已知,tan()9tan,则tan的最大值为_专练21两角和与差的正弦、余弦、正切公式1Dsin20cos10cos160sin10sin20cos10cos20sin10sin30.2Btan.3Bcos212sin21.4Dcos105cos15(si
3、n15cos15)sin(1545)sin60.5A.6C由sincos,得sincos,得sin,又,cossin.7DAB45,tan(AB)1,tanAtanB1tanAtanB.(1tanA)(1tanB)1tanAtanBtanAtanB2.8Ccos,0,sin,又cos(),0,0,sin(),coscos()coscos()sinsin(),又0,.9D2tantan2tan7,整理可得tan24tan40,tan2,故选D.10.解析:通解:,解得tan2或tan,当tan2时,sin2,cos2,此时sin2cos2,同理当tan时,sin2,cos2,此时sin2cos2,所以sin(sin2cos2).优解:,则sincoscossin,又sinsincoscossinsincos,则sincos,则sinsinsincoscossinsincos.11解析:由cossin,得cossinsin,cossin,sin.sinsinsin.12.解析:tan,解得tan.13B因为为第二象限角,由tan知,是第三象限角,所以sin,故sincos2sin.故选B.14C由sin,cos,且,为锐角,可知cos,sin,故cos()coscossinsin,又00,tan0,tantan(),即(tan)max.