ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:333.50KB ,
资源ID:450226      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-450226-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016届(新课标)高考数学(文)5年高考真题备考试题库:第7章 第4节 直线、平面平行的判定与性质 WORD版含答案.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016届(新课标)高考数学(文)5年高考真题备考试题库:第7章 第4节 直线、平面平行的判定与性质 WORD版含答案.DOC

1、20102014年高考真题备选题库第7章 立体几何第4节 直线、平面平行的判定与性质1(2014新课标全国,12分)如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO平面BB1C1C.(1)证明:B1CAB;(2)若ACAB1,CBB160,BC1,求三棱柱ABCA1B1C1的高解:(1)证明:连接BC1,则O为B1C与BC1的交点因为侧面BB1C1C为菱形,所以B1CBC1.又AO平面BB1C1C,所以B1CAO,故B1C平面ABO.由于AB平面ABO,故B1CAB.(2)作ODBC,垂足为D,连接AD.作OHAD,垂足为H.由于BCAO,BCOD,故BC平面

2、AOD,所以OHBC.又OHAD,所以OH平面ABC.因为CBB160,所以CBB1为等边三角形,又BC1,可得OD.由于ACAB1,所以OAB1C.由OHADODOA,且AD,得OH.又O为B1C的中点,所以点B1到平面ABC的距离为.故三棱柱ABCA1B1C1的高为.2(2014浙江,15分)如图,在四棱锥ABCDE中,平面ABC平面BCDE,CDEBED90,ABCD2,DEBE1,AC.(1)证明:AC平面BCDE;(2)求直线AE与平面ABC所成的角的正切值解:(1)证明:连接BD,在直角梯形BCDE中,由DEBE1,CD2,得BDBC,由AC,AB2,得AB2AC2BC2,即ACB

3、C.又平面ABC平面BCDE,从而AC平面BCDE.(2)在直角梯形BCDE中,由BDBC,DC2.得BDBC,又平面ABC平面BCDE,所以BD平面ABC.作EFBD,与CB延长线交于F,连接AF,则EF平面ABC.所以EAF是直线AE与平面ABC所成的角在RtBEF中,由EB1,EBF,得EF,BF;在RtACF中,由AC,CF,得AF.在RtAEF中,由EF,AF,得tanEAF.所以直线AE与平面ABC所成的角的正切值是.3(2014湖南,12分)如图所示,已知二面角MN的大小为60 ,菱形ABCD 在面 内, A,B两点在棱 MN上, BAD60, E是AB 的中点,DO面 ,垂足为

4、 O.(1)证明:AB 平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值解:(1)证明:如图,因为DO,AB所以DOAB.连接BD,由题设知,ABD是正三角形,又E是AB的中点,所以DEAB.而DODED,故AB平面ODE.(2)因为BCAD,所以BC与OD所成的角等于AD与OD所成的角,即ADO是BC与OD所成的角由(1)知,AB平面ODE,所以ABOE.又DEAB,于是DEO是二面角MN的平面角,从而DEO60.不妨设AB2,则AD2,易知DE.在RtDOE中,DODEsin60.连接AO,在RtAOD中,cosADO.故异面直线BC与OD所成角的余弦值为.4(2014山东,12

5、分)如图,四棱锥PABCD 中, AP平面PCD,ADBC,ABBCAD,E,F分别为线段AD,PC 的中点(1)求证: AP平面BEF;(2)求证:BE平面PAC .证明:(1)设ACBEO,连接OF,EC.由于E为AD的中点,ABBCAD,ADBC,所以AEBC,AEABBC,因此四边形ABCE为菱形,所以O为AC的中点又F为PC 的中点,因此在PAC中,可得APOF.又OF平面BEF,AP平面BEF.所以AP平面BEF.(2)由题意知EDBC,EDBC.所以四边形BCDE为平行四边形,因此BECD.又AP平面PCD,所以APCD,因此APBE.因为四边形ABCE为菱形,所以BEAC.又A

6、PACA,AP,AC平面PAC,所以BE平面PAC.5(2014江苏,14分)如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点已知PAAC,PA6,BC8,DF5.求证: (1)直线PA平面DEF;(2)平面BDE平面ABC.证明:(1)因为D,E分别为棱PC,AC的中点,所以DEPA.又因为PA平面DEF,DE平面DEF,所以直线PA平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA6,BC8,所以DEPA3,EFBC4.又因为DF5,故DF2DE2EF2,所以DEF90,即DEEF.又PAAC,DEPA,所以DEAC.因为ACEFE,AC平面ABC,EF

7、平面ABC,所以DE平面ABC.又DE平面BDE,所以平面BDE平面ABC.6(2014天津,13分)如图,四棱锥 PABCD的底面 ABCD是平行四边形,BABD,AD2, PAPD,E,F分别是棱AD,PC 的中点(1)证明 EF平面PAB;(2)若二面角PADB为60,证明平面PBC平面ABCD;求直线EF与平面PBC所成角的正弦值解:(1)如图,取PB中点M,连接MF,AM.因为F为PC中点,故MFBC且MFBC.由已知有BCAD,BCAD.又由于E为AD中点,因而MFAE且MFAE,故四边形AMFE为平行四边形,所以EFAM.又AM平面PAB,而EF平面PAB,所以EF平面PAB.(

8、2)连接PE,BE.因为PAPD,BABD,而E为AD中点,故PEAD,BEAD,所以PEB为二面角PADB的平面角在PAD中,由PAPD,AD2,可解得PE2.在ABD中,由BABD,AD2,可解得BE1.在PEB中,PE2,BE1,PEB60,由余弦定理,可解得PB,从而PBE90,即BEPB.又BCAD,BEAD,从而BEBC,因此BE平面PBC.又BE平面ABCD,所以平面PBC平面ABCD.连接BF.由知,BE平面PBC,所以EFB为直线EF与平面PBC所成的角由PB及已知,得ABP为直角而MBPB,可得AM.故EF.又BE1,故在RtEBF中,sinEFB.所以直线EF与平面PBC

9、所成角的正弦值为.7(2014四川,12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(1)若ACBC,证明:直线BC平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE平面A1MC?请证明你的结论解:(1)证明:因为四边形ABB1A1和ACC1A1都是矩形,所以AA1AB,AA1AC.因为AB,AC为平面ABC内两条相交直线,所以AA1平面ABC.因为直线BC平面ABC,所以AA1BC.又由已知,ACBC,AA1,AC为平面ACC1A1内两条相交直线,所以BC平面ACC1A1.(2)取线段AB的中点M,连接A1M,MC,A1

10、C,AC1,设O为A1C,AC1的交点由已知,O为AC1的中点连接MD,OE,则MD,OE分别为ABC,ACC1的中位线,所以,MD綊AC,OE綊AC,因此MD綊OE.连接OM,从而四边形MDEO为平形四边形,则DEMO.因为直线DE平面A1MC,MO平面A1MC,所以直线DE平面A1MC.即线段AB上存在一点M(线段AB的中点),使直线DE平面A1MC.8(2014湖北,13分)如图,在正方体 ABCDA1B1C1D1中,E,F,P,Q,M,N分别是棱AB ,AD ,DD1 ,BB1 ,A1B1 ,A1D1 的中点. 求证:(1)直线BC1 平面EFPQ ;(2)直线 AC1平面 PQMN

11、.证明:(1)连接AD1,由ABCDA1B1C1D1是正方体,知AD1BC1,因为F,P分别是AD,DD1的中点,所以FPAD1.从而BC1FP.而FP平面EFPQ,且BC1平面EFPQ,故直线BC1平面EFPQ.(2)如图,连接AC,BD,则ACBD.由CC1平面ABCD,BD平面ABCD,可得CC1BD.又ACCC1C,所以BD平面ACC1.而AC1平面ACC1,所以BDAC1.连接B1D1,因为M,N分别是A1B1,A1D1的中点,所以MNB1D1,故MNBD,从而MNAC1.同理可证PNAC1.又PNMNN,所以直线AC1平面PQMN.9.(2012山东,12分)如图,几何体EABCD

12、是四棱锥,ABD为正三角形,CBCD,ECBD.(1)求证:BEDE;(2)若BCD120,M为线段AE的中点,求证:DM平面BEC.解:(1)取BD的中点O,连接CO,EO.由于CBCD,所以COBD,又ECBD,ECCOC,CO,EC平面EOC,所以BD平面EOC,因此BDEO,又O为BD的中点,所以BEDE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MNBE.又MN平面BEC,BE平面BEC,所以MN平面BEC.又因为ABD为正三角形所以BDN30,又CBCD,BCD120,因此CBD30,所以DNBC.又DN平面BEC,BC平面BEC,所以DN平面BEC

13、.又MNDNN,故平面DMN平面BEC.又DM平面DMN,所以DM平面BEC.法二:延长AD,BC交于点F,连接EF.因为CBCD,BCD120,所以CBD30.因为ABD为正三角形,所以BAD60,ABC90,因此AFB30,所以ABAF.又ABAD,所以D为线段AF的中点连接DM,由于点M是线段AE的中点,因此DMEF.又DM平面BEC,EF平面BEC,所以DM平面BEC.10.(2011福建,4分)如图,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上若EF平面AB1C,则线段EF的长度等于_解析:因为直线EF平面AB1C,EF平面ABCD,且平面AB1C平面ABCDAC,所以EFAC,又因为在E是DA的中点,所以F是DC的中点,由中位线定理可得:EFAC,又因为在正方体ABCDA1B1C1D1中,AB2,所以AC2,所以EF.答案:11(2010山东,5分)在空间,下列命题正确的是()A平行直线的平行投影重合B平行于同一直线的两个平面平行C垂直于同一平面的两个平面平行D垂直于同一平面的两条直线平行解析:A项中平行直线的平行投影不一定重合,有可能平行,B项中平行于同一条直线的两个平面可能平行、相交,C项中垂直于同一个平面的两个平面可能平行、相交,D项正确答案:D

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3