1、课时5换底公式知识点 换底公式及应用1若2.5x1000,0.25y1000,则等于()A. B3C D3答案A解析由2.5x1000,0.25y1000得xlog2.51000,ylog0.251000,.2若log34log48log8mlog416,则m_.答案9解析由换底公式,得log4162,lg m2lg 3lg 9,m9. (2)已知lg 2a,lg 3b,那么log512_.答案(1)4(2)解析(2)log512.4计算:(log43log83)(log32log92)解原式.5已知x,y,z为正数,3x4y6z,2xpy.(1)求p;(2)求证:.解(1)设3x4y6zk(
2、显然k0,且k1),则xlog3k,ylog4k,zlog6k,由2xpy,得2log3kplog4kp,log3k0,p2log34.(2)证明:logk6logk3logk2logk4,.6计算:(1)log89log2732;(2)log927;(3)log2log3log5.解(1)log89log2732.(2)log927.(3)log2log3log5log253log325log5313log25(5log32)(log53)1515.易错点 换底公式的应用7.设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()AlogablogbclogcaBlogablogcalo
3、gcbCloga(bc)logablogacDloga(bc)logablogac易错分析由于对换底公式掌握不清而致错答案B正解对于A,logablogbclogablogac,C,D中公式运用错误,loga(bc)logablogac.一、选择题1(log29)(log34)()A. B. C2 D4答案D解析(log29)(log34)4.2已知ln 5a,ln 3b,那么log1527用含a,b的代数式表示为()A. B. C. D.答案B解析因为log1527,故选B.3若log5log36log6x2,则x等于()A9 B. C25 D.答案D解析由换底公式,得原式2,lg x2lg
4、 5,x52.答案C解析5设log83p,log35q,则lg 5等于()Ap2q2 B.(3p2q)C. Dpq答案C解析log83p,lg 33plg 2.log35q,lg 5qlg 33pqlg 23pq(1lg 5),lg 5,故选C.二、填空题6若logablog3a4,则b的值为_答案81解析logablog3a4,即log3a4,即log3b4,34b,b81.7方程log3(x1)log9(x5)的解是_答案4解析由换底公式,得log9(x5)log3(x5)原方程可化为2log3(x1)log3(x5),即log3(x1)2log3(x5),(x1)2x5.x23x40,解
5、得x4或x1.又x1,故x4.8设f(n)logn1(n2)(nN*),现把满足乘积f(1)f(2)f(n)为整数的n叫做“贺数”,则在区间(1,2018)内所有“贺数”的个数是_答案9解析f(n)logn1(n2),f(1)f(2)f(n)log2(n2)n(1,2018),n2(3,2020),2101024,2112048,在(3,2020)内含有22,23,210共9个2的幂,故在区间(1,2018)内所有“贺数”的个数为9.三、解答题9若2a3,3b5,试用a与b表示log4572.解2a3,3b5,log23a,log35b,log25log23log35ab,log4572.10设0a1,x,y满足logax3logxalogxy3,若当y时,logay取得最小值,求a的值解由已知条件,得logax3logxalogxylogax3,所以logay(logax)23logax32.当logax时,logay有最小值.此时y,所以有loga,