1、一单项选择题。(本部分共5道选择题)1已知不等式ax2bx10的解集是,则不等式x2bxa0的解集是()A(2,3) B(,2)(3,)C. D.解析由题意知,是方程ax2bx10的根,所以由根与系数的关系得,.解得a6,b5,不等式x2bxa0即为x25x60,解集为(2,3)答案A2若函数f(x)2sin(x),xR(其中0,|)的最小正周期是,且f(0),则()A, B,C2, D2,解析由T,2.由f(0)2sin ,sin ,又|,.答案D3已知函数f(x)x3ax24在x2处取得极值,若m、n1,1,则f(m)f(n)的最小值是()A13 B15C10 D15解析:求导得f(x)3
2、x22ax,由函数f(x)在x2处取得极值知f(2)0,即342a20,a3.由此可得f(x)x33x24,f(x)3x26x,易知f(x)在(1,0)上单调递减,在(0,1)上单调递增,当m1,1时,f(m)minf(0)4.又f(x)3x26x的图象开口向下,且对称轴为x1,当n1,1时,f(n)minf(1)9.故f(m)f(n)的最小值为13.答案:A4设集合M1,2,Na2,则“a1”是“NM”的()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分又不必要条件解析若NM,则需满足a21或a22,解得a1或a.故“a1”是“NM”的充分不必要条件答案A5某品牌香水瓶的三视图
3、如图 (单位:cm),则该几何体的表面积为()(三视图:主(正)试图、左(侧)视图、俯视图)A. cm2 B. cm2C. cm2 D. cm2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱上面四棱柱的表面积为23312130;中间部分的表面积为21,下面部分的表面积为24416264.故其表面积是94.答案 C二填空题。(本部分共2道填空题)1. 已知x,y为正实数,且满足4x3y12,则xy的最大值为_解析 124x3y2,xy3.当且仅当即时xy取得最大值3.答案 32 设f(x)是偶函数,且当x0时是单调函数,则满足f(2x)f的所有x之和为_解析 f(x)
4、是偶函数,f(2x)f,f(|2x|)f,又f(x)在(0,)上为单调函数,|2x|,即2x或2x,整理得2x27x10或2x29x10,设方程2x27x10的两根为x1,x2,方程2x29x10的两根为x3,x4.则(x1x2)(x3x4)8.答案 8三解答题。(本部分共1道解答题)16等差数列an的各项均为正数,a13,前n项和为Sn,bn为等比数列,b11,且b2S264,b3S3960.(1)求an与bn;(2)求.解析(1)设an的公差为d,bn的公比为q,则d为正数,an3(n1)d,bnqn1.依题意有解得或(舍去)故an32(n1)2n1,bn8n1.(2)Sn35(2n1)n(n2),所以.