1、课后素养落实(四)直线的一般式方程(建议用时:40分钟) 一、选择题1直线xy10的倾斜角为()ABCDD直线xy10的斜率k,所以直线倾斜角为2将直线1化成一般式方程为()Ayx4By(x3)C4x3y120D4x3y12C直线1化成一般式方程为4x3y1203下列直线中,斜率为,且不经过第一象限的是()A3x4y70B4x3y70C4x3y420D3x4y420B将一般式化为斜截式,斜率为的有B,C两项又yx14过点(0,14),即直线过第一象限,所以只有B项正确4如果AB0且BC0,那么直线AxByC0不经过()A第一象限B第二象限C第三象限D第四象限C由AB0且BC0,可得直线AxBy
2、C0的斜率为0,直线在y轴上的截距0,故直线不经过第三象限,故选C5一条光线从点A处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为()Ay2x1By2x1CyxDyxB由光的反射定律可得,点A关于y轴的对称点M在反射光线所在的直线上再由点B(0,1)也在反射光线所在的直线上,用两点式可求得反射光线所在的直线方程为,即y2x1二、填空题6已知三点(2,3),(4,3),在同一条直线上,则实数k的值为_123,k127已知直线l的斜率是直线2x3y120的斜率的,l在y轴上的截距是直线2x3y120在y轴上的截距的2倍,则直线l的方程为_x3y240由2x3y120知,斜率为,在y轴上
3、截距为4根据题意,直线l的斜率为,在y轴上截距为8,所以直线l的方程为x3y2408已知直线l的倾斜角为,sin ,且这条直线l经过点P(3,5),则直线l的一般式方程为_3x4y110或3x4y290因为sin ,所以cos ,所以直线l的斜率为ktan ,又因为直线l经过点P(3,5),所以直线l的方程为y5(x3)或y5(x3),所以直线l的一般式方程为3x4y110或3x4y290三、解答题9直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程解设直线l的横截距为a,由题意可得纵截距为6a,所以直线l的方程为1,因为点(1,2)在直线l上,所以1,解
4、得a2或a3当a2时,直线的方程为2xy40,直线经过第一、二、四象限;当a3时,直线的方程为xy30,直线经过第一、二、四象限综上所述,所求直线方程为2xy40或xy3010设直线l的方程为(m22m3)x(2m2m1)y2m6,根据下列条件分别求m的值(1)在x轴上的截距为1;(2)斜率为1;(3)经过定点P(1,1)解(1)直线过点P(1,0),m22m32m6解得m3或m1又m3时,直线l的方程为y0,不符合题意,m1(2)由斜率为1,得解得m(3)直线过定点P(1,1),则(m22m3)(2m2m1)2m6,解得m或m211(多选题)关于直线l:xy10,下列说法正确的有()A过点(
5、,2)B斜率为C倾斜角为60D在y轴上的截距为1BC对于A,将(,2)代入l:xy10,可知不满足方程,故A不正确;对于B,由xy10,可得yx1,所以k,故B正确;对于C,由k,即tan ,可得直线倾斜角为60,故C正确;对于D,由xy10,可得yx1,直线在y轴上的截距为1,故D不正确12直线l:mx(2m1)y60与两坐标轴所围成的三角形的面积为3,则m的值为()A2BC3D2或D在mx(2m1)y60中令x0,得y,令y0,得x,即交点分别为,据题意:3,解得m2或m13设A、B是x轴上的两点,点P的横坐标为2且|PA|PB|,若直线PA的斜率为,那么直线PB的斜率为_由条件可知PA与
6、PB两直线的倾斜角互补,故kPBkPA14已知直线AxByC0的斜率为5,且A2B3C0,则直线的方程是_15x3y70因为直线AxByC0的斜率为5,所以B0,且5,即A5B,又A2B3C0,所以5B2B3C0,即CB此时直线的方程化为5BxByB0即5xy0,故所求直线的方程为15x3y7015一河流同侧有两个村庄A、B,两村庄计划在河上共建一水电站供两村使用,已知A、B两村到河边的垂直距离分别为300 m和700 m,且两村相距500 m,问:水电站建于何处送电到两村的电线用料最省?解如图,以河流所在直线为x轴,y轴通过点A,建立直角坐标系,则点A(0,300),B(x,700),设B点在y轴上的射影为H,则x|BH|300,故点B(300,700),设点A关于x轴的对称点A(0,300),则直线AB的斜率k,直线AB的方程为yx300令y0得x90,得点P(90,0),故水电站建在河边P(90,0)处电线用料最省