1、课后素养落实(十四)椭圆的几何性质(建议用时:40分钟)一、选择题1已知椭圆x2my21的焦点在x轴上,且长轴长是短轴长的2倍,则m()ABC2D4 D将椭圆方程化为标准形式为x21,所以长轴长为2,短轴长为2,由题意得222,解得m42椭圆1与1(0kb0),A,B分别为椭圆的左顶点和上顶点,F为右焦点,且ABBF,则椭圆的离心率为()A B C DD在RtABF中,|AB|,|BF|a,|AF|ac,由|AB|2|BF|2|AF|2,得a2b2a2(ac)2将b2a2c2代入,得a2acc20,即e2e10, 解得e,因为0e1,所以e故选D13已知椭圆1(ab0)的左顶点为A,左焦点为F
2、,若该椭圆的上顶点到焦点的距离为2,离心率e,则椭圆的标准方程是_若点P为椭圆上任意一点,则的取值范围是_10,12因为椭圆的上顶点到焦点的距离为2,所以a2因为离心率e,所以c1,b,则椭圆的方程为1,所以点A的坐标为(2,0),点F的坐标为(1,0)设P(x,y),则(x2,y)(x1,y)x23x2y2由椭圆的方程,得y23x2,所以x23xx25(x6)24因为x2,2,所以0,1214已知P(m,n)是椭圆x21上的一个动点,则m2n2的取值范围是_1,2因为P(m,n)是椭圆x21上的一个动点,所以m21,即n222m2,所以m2n22m2,又1m1,所以12m22,所以1m2n2
3、215设F1,F2分别是椭圆E:1(ab0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|3|F1B|(1)若|AB|4,ABF2的周长为16,求|AF2|;(2)若cosAF2B,求椭圆E的离心率解(1)由|AF1|3|F1B|,|AB|4,得|AF1|3,|F1B|1因为ABF2的周长为16,所以由椭圆定义可得4a16,|AF1|AF2|2a8故|AF2|835(2)设|F1B|k,则k0且|AF1|3k,|AB|4k由椭圆定义可得,|AF2|2a3k,|BF2|2ak在ABF2中,由余弦定理可得,|AB|2|AF2|2|BF2|22|AF2|BF2|cosAF2B,即(4k)2(2a3k)2(2ak)2(2a3k)(2ak)化简可得(ak)(a3k)0,而ak0,故a3k于是有|AF2|3k|AF1|,|BF2|5k因此|BF2|2|F2A|2|AB|2,可得F1AF2A,故AF1F2为等腰直角三角形从而ca,所以椭圆E的离心率e