ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:368.50KB ,
资源ID:442261      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-442261-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高考统考数学理科北师大版一轮复习教师用书:第8章 第8节 曲线与方程 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高考统考数学理科北师大版一轮复习教师用书:第8章 第8节 曲线与方程 WORD版含解析.doc

1、曲线与方程考试要求1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程1曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线提醒:“曲线C是方程f(x,y)0的曲线”是“曲线C上的点的坐标都是方程f(x,y)0的解”的充分不必要条件2求动点的轨迹方程的基本步骤一、易错易误辨析(正确的打“”,错误的打“”)(1)f(x0,y0)0是点P(x0,y0)在曲线f(x,y)0上的充要条件(

2、)(2)方程x2xyx的曲线是一个点和一条直线()(3)动点的轨迹方程和动点的轨迹是一样的()(4)方程y与xy2表示同一曲线()答案(1)(2)(3)(4)二、教材习题衍生1到点F(0,4)的距离比到直线y5的距离小1的动点M的轨迹方程为()Ay16x2By16x2Cx216yDx216yC由题意可知,动点M到点F(0,4)的距离等于到直线y4的距离,故点M的轨迹为以点F(0,4)为焦点,以y4为准线的抛物线,其轨迹方程为x216y.2P是椭圆1上的动点,过P作椭圆长轴的垂线,垂足为M,则PM中点的轨迹方程为()A.x21 B.y21C.1 D.1B设中点坐标为(x,y),则点P的坐标为(x

3、,2y),代入椭圆方程得y21.故选B.3若过点P(1,1)且互相垂直的两条直线l1,l2分别与x轴,y轴交于A,B两点,则AB中点M的轨迹方程为_xy10设M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连接PM.l1l2,|PM|OM|,而|PM|,|OM|.,化简,得xy10,即为所求的轨迹方程4已知线段AB的长为6,直线AM,BM相交于M,且它们的斜率之积是,则点M的轨迹方程是_1(x3)以AB所在直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图略),则A(3,0),B(3,0)设点M的坐标为(x,y),则直线AM的斜率kAM(x3),直线BM的斜

4、率kBM(x3)由已知有(x3),化简整理得点M的轨迹方程为1(x3) 考点一直接法求轨迹方程 利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简(2)运用直接法应注意的问题在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的;若方程的化简过程是恒等变形,则最后的验证可以省略典例1已知动点P(x,y)与两定点M(1,0),N(1,0)连线的斜率之积等于常数(0)(1)求动点P的轨迹C的方程;(2)试根据的取值情况讨论轨迹C的形状解(1)由题意可知,直线PM与PN的斜率均存在且均不为零,所以kP

5、MkPN,整理得x21(0,x1)即动点P的轨迹C的方程为x21(0,x1)(2)当0时,轨迹C为中心在原点,焦点在x轴上的双曲线(除去顶点);当10时,轨迹C为中心在原点,焦点在x轴上的椭圆(除去长轴的两个端点);当1时,轨迹C为以原点为圆心,1为半径的圆除去点(1,0),(1,0)当1时,轨迹C为中心在原点,焦点在y轴上的椭圆(除去短轴的两个端点)点评:(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点列式化简检验求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说

6、明轨迹的形状、位置、大小等1(2020全国卷)在平面内,A,B是两个定点,C是动点,若1,则C的轨迹为()A圆B椭圆 C抛物线D直线A以AB所在直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图略),设A(a,0),B(a,0),C(x,y),则(xa,y),(xa,y),1,(xa)(xa)yy1,x2y2a21,点C的轨迹为圆,故选A.2已知两点M(1,0),N(1,0)且点P使,成公差小于0的等差数列,则点P的轨迹是什么曲线?解设P(x,y),由M(1,0),N(1,0)得(1x,y),(1x,y),(2,0),所以2(1x),x2y21,2(1x)于是,是公差小于0的等差数列

7、等价于即所以点P的轨迹是以原点为圆心,为半径的右半圆(不含端点) 考点二定义法求轨迹方程 定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程(2)利用定义法求轨迹方程时,还要看轨迹是不是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x或y进行限制典例2已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求 C的方程解由已知得圆M的圆心为M(1,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y),半径

8、为R.因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24|MN|2.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为1(x2)母题变迁1把本例中圆M的方程换为:(x3)2y21,圆N的方程换为:(x3)2y21,求圆心P的轨迹方程解由已知条件可知圆M和N外离,所以|PM|1R,|PN|R1,故|PM|PN|(1R)(R1)2|MN|6,由双曲线的定义知点P的轨迹是双曲线的右支,其方程为x21(x1)2在本例中,若动圆P过圆N的圆心,并且与直线x1相切,求圆心P的轨迹方程解由于点P到定点N(1,0)和定直线x1

9、的距离相等,所以根据抛物线的定义可知,点P的轨迹是以N(1,0)为焦点,以x轴为对称轴、开口向右的抛物线,故其方程为y24x.点评:应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系式结合曲线的定义判断是何种曲线,再设出标准方程,用待定系数法求解已知圆N:x2(y)236,P是圆N上的点,点Q在线段NP上,且有点D(0,)和DP上的点M,满足2,0.当P在圆上运动时,求点Q的轨迹方程解连接QD(图略),由题意知,MQ是线段DP的中垂线,所以|NP|NQ|QP|QN|QD|6|DN|2.由椭圆的定义可知,点Q的轨迹是以D,N为焦点的椭圆,依题意设椭圆方程为1(ab0),

10、则c,a3,b2,所以点Q的轨迹方程是1. 考点三相关点(代入)法求轨迹方程 “相关点法”求轨迹方程的基本步骤 典例3(2017全国卷)设O为坐标原点,动点M在椭圆C:y21上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线x3上,且1.证明:过点P且垂直于OQ的直线l过C的左焦点F.解(1)设P(x,y),M(x0,y0),则N(x0,0),(xx0,y),(0,y0)由得x0x,y0y.因为M(x0,y0)在C上,所以1.因此点P的轨迹方程为x2y22.(2)证明:由题意知F(1,0)设Q(3,t),P(m,n),则(3,t),(1m,n),33mtn,(

11、m,n),(3m,tn)由1得3mm2tnn21,又由(1)知m2n22,故33mtn0.所以0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.点评:本例第(1)问在求解中巧用“”实现了动点P(x,y)与另两个动点M(x0,y0),N(x0,0)之间的转换,并借助动点M的轨迹求得动点P的轨迹方程;对于本例第(2)问的求解,采用的是“以算待证”的方法,即求得l的方程后,借助直线系的特点,得出直线过定点1已知F1,F2分别为椭圆C:1的左、右焦点,点P是椭圆C上的动点,则PF1F2的重心G的轨迹方程为()A.1(y0)B.y21(y0)C.3y21(y0)D.x

12、2y21(y0)C依题意知F1(1,0),F2(1,0),设P(x0,y0)(y00),G(x,y),则由三角形重心坐标公式可得 即 代入椭圆C:1,得重心G的轨迹方程为3y21(y0)2.如图所示,动圆C1:x2y2t2,1t3与椭圆C2:y21相交于A,B,C,D四点点A1,A2分别为C2的左、右顶点,求直线AA1与直线A2B交点M的轨迹方程解由椭圆C2:y21,知A1(3,0),A2(3,0),设点A的坐标为(x0,y0),由曲线的对称性,得B(x0,y0),设点M的坐标为(x,y),直线AA1的方程为y(x3)直线A2B的方程为y(x3)由相乘得y2(x29)又点A(x0,y0)在椭圆C2上,故y1.将代入得y21(x3,y0)因此点M的轨迹方程为y21(x3,y0)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3