ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:699KB ,
资源ID:441859      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-441859-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012年高三数学一轮复习资料第九章 解析几何初步第3讲 圆的方程.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012年高三数学一轮复习资料第九章 解析几何初步第3讲 圆的方程.doc

1、第3讲 圆的方程 知识梳理1. 圆的标准方程与一般方程圆的标准方程为,其中圆心为,半径为r;圆的一般方程为,圆心坐标,半径为。方程表示圆的充要条件是2.以为直径端点的圆方程为3. 若圆与轴相切,则;若圆与轴相切,则 4. 若圆关于轴对称,则; 若圆关于轴对称,则;若圆关于轴对称,则; 5、点与圆的位置关系:在圆内在圆上 在圆外重难点突破重点: 掌握确定圆的几何要素, 掌握圆的标准方程和圆的一般方程, 难点:根据已知条件,求圆的方程重难点:围绕圆的几何性质进行合理转化,运用方程思想列出关于参数:(或)得到方程组,进而求出圆的方程1.充分利用圆的几何性质解题圆上的动点到已知直线(或点)的距离的最大

2、值和最小值,转化为圆心到已知直线(或点)的距离来处理问题1:已知圆和点,点P在圆上,求面积的最小值点拔:圆心(4,3)到直线的距离为,P到直线的距离的最小值为,求面积的最小值为2.运用转化的思想处理圆的对称问题问题2:圆关于直线对称,则 点拨:圆关于直线对称的实质是圆心在直线上,因此可将圆心坐标代入直线方程解决解析:问题3:圆关于直线的对称圆的方程为 点拨:两圆和关于直线对称,可以转化为点对称问题(即圆心和关于直线对称且半径相等),也可以用相关点法来处理,后一种方法更有推广价值解析:方法1:原点关于直线的对称点为(1,1),所以圆关于直线的对称圆的方程为方法2:设是圆上一动点,它关于直线的对称

3、点为,则 在圆, 圆关于直线的对称圆的方程为热点考点题型探析考点1 圆的方程 题型1: 对圆的方程的认识 例1 设方程x2+y22(m+3)x+2(14m2)y+16m4+9=0。(1)当且仅当m在什么范围内,该方程表示一个圆。(2)当m在以上范围内变化时,求半径最大的圆的方程。(3)求圆心的轨迹方程解析(1)由得:,化简得:,解得:。所以当时,该方程表示一个圆。(2)r=,当 时,(3)设圆心,则,消去得所求的轨迹方程为【名师指引】(1)已知圆的一般方程,要能熟练求出圆心坐标、半径及掌握方程表示圆的条件;(2)第3问求圆心的轨迹方程,使用了参数法,即把x,y都表示成m的函数,消去参数可得到方

4、程,用此法要注意变量x,y的范围题型2: 求圆的方程例2(1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0 上的圆的方程; (2)求以O(0,0),A(2,0),B(0,4)为顶点的三角形OAB外接圆的方程。【解题思路】根据条件,列方程组求参数解析(1)设圆心,则有,所求圆的方程为(2)采用一般式,设圆的方程为,将三个已知点的坐标代入得,解得:故所求圆的方程为【名师指引】(1)求圆的方程必须满足三个独立条件方可求解,选择方程的形式,合理列出方程组是关键,(2)当条件与圆心、半径有关时常选择标准方程,当条件是圆经过三个点时,常选用一般方程【新题导练】1.若,方程表示的圆的个数为

5、( ).A、0个 B、1个 C、2个 D、3个解析:B得,满足条件的只有一个,方程表示的圆的个数为1.2. ( 广州六中2008-2009学年度高三期中考试) 若圆的圆心到直线的距离为,则a的值为( )A-2或2BC2或0D-2或0解析: C 圆的圆心为(1,2),或23.与两坐标轴都相切,且过点(2,1)的圆的方程为 解析 或4.动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,那么点的轨迹方程为( )A. B. C. D. 解析B设,则,化简得考点2 圆的几何性质 题型1:运用圆的几何性质解题 例3 一圆与y轴相切,圆心在直线x3y=0上,且直线y=x截圆所得弦长为2,求此圆的方

6、程.【解题思路】因题目条件与圆心、半径关系密切,选择圆的标准方程,与弦长有关的问题,一般要利用弦心距、半径、半弦长构成的“特征三角形” 解析:因圆与y轴相切,且圆心在直线x3y=0上,故设圆方程为(x3b)2+(yb)2=9b2.又因为直线y=x截圆得弦长为2,则有()2+()2=9b2,解得b=1.故所求圆方程为(x3)2+(y1)2=9或(x+3)2+(y+1)2=9.【名师指引】在求圆的方程时,应当注意以下几点:(1)确定用圆的标准方程还是一般方程;(2)运用圆的几何性质(如本例的相切、弦长等)建立方程求得a、b、r或D、E、F;(3)在待定系数法的应用上,列式要尽量减少未知量的个数.例

7、4 已知O的半径为3,直线l与O相切,一动圆与l相切,并与O相交的公共弦恰为O的直径,求动圆圆心的轨迹方程.【解题思路】问题中的几何性质十分突出,如何利用切线、直径、垂直、圆心这些几何性质是关键,动圆圆心满足的条件是关注的焦点 解析取过O点且与l平行的直线为x轴,过O点且垂直于l的直线为y轴,建立直角坐标系.设动圆圆心为M(x,y),O与M的公共弦为AB,M与l切于点C,则|MA|=|MC|.AB为O的直径,MO垂直平分AB于O.由勾股定理得|MA|2=|MO|2+|AO|2=x2+y2+9,而|MC|=|y+3|,=|y+3|.化简得x2=6y,这就是动圆圆心的轨迹方程.【名师指引】求轨迹的

8、步骤是“建系,设点,列式,化简”,建系的原则是特殊化(把图形放在最特殊的位置上),这类问题一般需要通过对图形的观察、分析、转化,找出一个关于动点的等量关系。【新题导练】5.已知圆的方程为.是该圆过点(3,5)的11条弦的长,若数列是等差数列,则 数列的公差的最大值为 解析 圆心坐标为(3,4),半径为5,圆的弦长的最小值和最大值分别是和10,数列的公差的最大值为考点: 与圆有关的最值题型:求与圆有关的最值例4 已知圆,求(1)的最大值(2)的最大值与最小值(3)的最小值【解题思路】根据所求式子的几何意义求解或转化为函数的最值解析(1)表示圆上的点到原点的距离的平方因圆心到点的距离为2,的最大值

9、为3,从而的最大值为9方法2:设,则(2)表示圆上的点与原点连线的斜率,所以的最大值与最小值是直线与圆相切时的斜率,设直线的方程为,由得,的最大值与最小值分别为和(3)设,则解法2:设,则,代入圆的方程并化简得:,解得:【名师指引】(1)与圆有关的最值的求法有:几何法、函数法、判别式法(2)用几何法时,要见“数”想“形”,即所求式子的几何意义(3)用函数法时,常用三角换元【新题导练】6已知满足,则的最小值为 解析 表示圆上的点与点连线的斜率,所以的最小值是直线与圆相切时的斜率,设直线的方程为,即由得,的最大值与最小值分别为 抢分频道基础巩固训练1、点()在圆的内部,则的取值范围是( )A11B

10、 01 C1 D1解析: 由得12、(2009天河区)直线平分圆的周长,则A3 B5C3D5 解析:直线经过圆心(4,-1), 3、方程表示的圆与轴相切于原点,则 AB C D 解析:圆心在轴上,又圆经过原点,4、直线截圆所得弦的中点是,则= 解析:圆心,半径,又5、关于方程表示的圆,下列叙述中:关于直线x+y=0对称;其圆心在x轴上;过原点半径为.其中叙述正确的是(要求写出所有正确命题的序号)解析: 圆心为,半径为,故正确6、已知的三个顶点的坐标分别为,以原点为圆心的圆与三角形有唯一的公共点,求圆的方程解析:原点到三角形三边的最近距离是1,原点到三角形三个顶点的最远距离是,故所求圆的方程为或

11、综合提高训练3-47、(2007 惠州)若直线经过圆的圆心,则的最小值是 ( )A B C4 D2解:圆心为,8、已知mR,直线l:和圆C:。(1)求直线l斜率的取值范围;(2)直线l与圆C相交于A、B两点,若的面积为,求直线的方程解:()直线的方程可化为,直线的斜率,2分因为,所以,当且仅当时等号成立所以,斜率的取值范围是5分()由()知的方程为,其中圆的圆心为,半径圆心到直线的距离9分,解得所求的直线方程为或9、(惠州市2009届高三第一次调研考试)已知平面区域恰好被面积最小的圆及其内部所覆盖()试求圆的方程()若斜率为1的直线与圆C交于不同两点满足,求直线的方程解:()由题意知此平面区域

12、表示的是以构成的三角形及其内部,且是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,所以圆的方程是 ()设直线的方程是:因为,所以圆心到直线的距离是,即解得: 所以直线的方程是: 10已知圆C:,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点,若存在,求出直线l的方程;若不存在说明理由。解:圆C化成标准方程为假设存在以AB为直径的圆M,圆心M的坐标为(a,b)由于CMl,kCMkl= -1 kCM=, 即a+b+1=0,得b= -a-1 直线l的方程为y-b=x-a,即x-y+b-a=0 CM=以AB为直径的圆M过原点,把代入得,当, 直线l的方程为x-y-4=0;当, 直线l的方程为x-y+1=0故这样的直线l是存在的,方程为x-y-4=0 或x-y+1=0参考例题:1、 过点且与轴相切的圆有且只有一个,求实数的值和这个圆的方程解析:由题意,设所求圆的方程为,点在圆上,将上式代入下式并整理得:满足条件的圆有且只有1个,方程有且只有1个根,或即或或当时,所求圆的方程为当时,所求圆的方程为

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3