ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:225.50KB ,
资源ID:433491      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-433491-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019-2020学年人教B版数学必修三课时分层作业14 变量的相关性 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019-2020学年人教B版数学必修三课时分层作业14 变量的相关性 WORD版含解析.doc

1、高考资源网() 您身边的高考专家课时分层作业(十四)变量的相关性(建议用时:60分钟)合格基础练一、选择题1下列两个变量之间的关系,哪个不是函数关系()A正方体的棱长和体积B圆半径和圆的面积C正n边形的边数和内角度数之和D人的年龄和身高DA、B、C都是函数关系,对于A,Va3;对于B,Sr2;对于C,g(n)(n2).而对于年龄确定的不同的人可以有不同的身高,选D.2已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为()A.1.5x2B.1.5x2C.1.5x2D.1.5x2B由散点图知,变量x、y呈负相关,且回归直线在y轴上的截距大于0,故0,0.因此回归方程可能为1.

2、5x2.3有几组变量:汽车的重量和汽车每消耗1升汽油所行驶的平均路程;平均日学习时间和平均学习成绩;立方体的棱长和体积其中两个变量成正相关的是()ABC DC是负相关;是正相关;是函数关系,不是相关关系4设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归直线方程为0.85x85.71,则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD若该大学某女生身高为170 cm,则可断定其体重必为58.79 kgD为正

3、数,所以两变量具有正的线性相关关系,故A正确;B,C显然正确;若该大学某女生身高为170 cm,则可估计其体重为58.79 kg.5某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元4235销售额y/万元49263954根据上表可得回归直线方程bxa中的为9.4,据此模型预报广告费用为6万元时,销售额为()A63.6万元 B65.5万元C67.7万元 D72.0万元B(4235)3.5,(49263954)42,所以429.43.59.1,所以回归直线方程为9.4x9.1,令x6,得9.469.165.5(万元)故选B.二、填空题6若施化肥量x(千克/亩)与水稻产量y(千克/亩)的

4、回归直线方程为5x250,当施化肥量为80千克/亩时,预计水稻产量为亩产_千克左右650当x80时,400250650.7已知一个回归直线方程为1.5x45,x1,7,5,13,19,则_.58.5因为(1751319)9,且回归直线过样本中心点(,),所以1.594558.5.8调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:0.254x0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元0.254由0.254x0.321知,当x增加1万元时,年饮食支出

5、y增加0.254万元三、解答题9某工厂对某产品的产量与成本的资料分析后有如下数据:产量x(千件)2356成本y(万元)78912(1)画出散点图;(2)求成本y与产量x之间的线性回归直线方程(结果保留两位小数)解(1)散点图如图所示(2)设y与产量x的线性回归直线方程为bxa,4,9,91.1044.60.回归直线方程为:1.10x4.60.10某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程x,其中20;(2)预计在今后的销售中,销量与单价仍然服从(1)中

6、的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)解(1)由于(x1x2x3x4x5x6)8.5,(y1y2y3y4y5y6)80.所以80208.5250,从而回归直线方程为20x250.(2)设工厂获得的利润为L元,依题意得Lx(20x250)4(20x250)20x2330x1 00020(x8.25)2361.25.当且仅当x8.25时,L取得最大值,故当单价定为8.25元时,工厂可获得最大利润等级过关练1根据如下样本数据x345678y4.02.50.50.52.03.0得到的回归直线方程为bxa,则()Aa0,b0 Ba0,b0C

7、a0,b0 Da0,b0B作出散点图如下:观察图象可知,回归直线方程bxa的斜率b0,当x0时,a0.故a0,b0.2已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得线性回归直线方程为bxa.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa,则以下结论正确的是()A.b,a B.b,aC.a D.b,aC根据所给数据求出直线方程ybxa和回归直线方程的系数,并比较大小由(1,0),(2,2)求b,a.b2,a0212.求,时,a.3期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y对总成绩x的回归直线方程为60

8、.4x.由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差_分20令两人的总成绩分别为x1,x2.则对应的数学成绩估计为160.4x1,260.4x2,所以|12|0.4(x1x2)|0.45020.4某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_ cm.185儿子和父亲的身高可列表如下:父亲身高173170176儿子身高170176182设回归直线方程x,由表中的三组数据可求得1,故1761733,故回归直线方程为3x,将x182代入得孙子的身高

9、为185 cm.5假设关于某设备的使用年限x(年)和所支出的年平均维修费用y(万元)(即维修费用之和除以使用年限),有如下的统计资料:使用年限x23456维修费用y2.23.85.56.57.0(1)画出散点图;(2)从散点图中发现使用年限与所支出的年平均维修费用之间关系的一般规律;(3)求回归直线方程;(4)估计使用年限为10年时所支出的年平均维修费用是多少?解(1)画出散点图如图所示(2)由图可知,各点散布在从左下角到右上角的区域里,因此,使用年限与所支出的年平均维修费用之间成正相关,即使用年限越长,所支出的年平均维修费用越多(3)从散点图可以看出,这些点大致分布在一条直线的附近,因此,两变量呈线性相关关系由题表数据可得,4,5,xiyi112.3,x90,由公式可得1.23,51.2340.08.即回归直线方程是1.23x0.08.(4)由(3)知,当x10时,1.23100.0812.38(万元)故估计使用年限为10年时所支出的年平均维修费用是12.38万元- 8 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3