1、概率与统计高考真题一、选择题 :1(2004全国理11)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )ABCD2(2004全国文11)从1,2,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )ABCD3、(2004重庆理11)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( ) A B C D4、(2004重庆文11)已知盒中装有3只螺口与7只
2、卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为( )A B C D5、(2004上海文理16)某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280 行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436 若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A计算机行业好于化工行业. B建筑行业好于物流
3、行业.C机械行业最紧张. D营销行业比贸易行业紧张.6、(2004辽宁5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是 p2,那么恰好有1人解决这个问题的概率是ABCD7、(2004辽宁8)已知随机变量的概率分布如下:12345678910m 则ABCD8、(2004江苏6)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A0.6小时 B0.9小时 C1.0小时 D1.5小时0.5人数(人)时间(小时)2010501.01
4、.52.0159、(2004江苏9)将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( ) A B C D10。、(2004湖南文理5)某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点。公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为。则完成、这两项调查宜采用的抽样方法依次是( )A分层抽样法,系统抽样法B分层抽样法,简单随机抽样法C系统抽样法,分层抽样法
5、D简单随机抽样法,分层抽样法11、(2004湖南理11)农民收入由工资性收入和其它收入两部分构成。2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元。根据以上数据,2008年该地区农民人均收入介于( )A4200元4400元B4400元4600元 C4600元4800元 D4800元5000元12、(2004广东6)一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工
6、人照看的概率是()A0.1536 B 0.1808C 0.5632D 0.9728 二、填空题1、(2004全国理13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有个红球,则随机变量的概率分布为012P2、(2004天津理13) 某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .3、(2004辽宁16)口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(以数值作答)4、(2004湖南理14)同时
7、抛物线两枚相同的均匀硬币,随机变量=1表示结果中有正面向上,=0表示结果中没有正面向上,则E= .5(2004湖北理13)设随机变量的概率分布为 .6、(2004湖北文15)某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n= . 7、(2004广东13)某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答)8、(2004福建理15)某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:他第
8、3次击中目标的概率是0.9;他恰好击中目标3次的概率是0.930.1;他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正确结论的序号).9、(2004福建文15)一个总体中有100个个体,随机编号0,1,2,99,依编号顺序平均分成10个小组,组号依次为1,2,3,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是 .10、(2003文理,14)某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量。现用分层
9、抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆。11、(2003上海理9)某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示)三、解答题1(2004全国文理18)(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有部电话占线.试求随机变量的概率分布和它的期望.2(2004全国文11)(本小题满分12分)从10位同学(其中6女,4男)中随机选出3
10、位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求:(I)选出的3位同学中,至少有一位男同学的概率;(II)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.3、(2004全国文理18)(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:()A、B两组中有一组恰有两支弱队的概率;()A组中至少有两支弱队的概率.4、(2004全国理19)(本小题满分12分)某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确
11、与否相互之间没有影响.()求这名同学回答这三个问题的总得分的概率分布和数学期望;()求这名同学总得分不为负分(即0)的概率.5、(2004全国文20)(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.()求这名同学得300分的概率;()求这名同学至少得300分的概率.6、(2004重庆理18)(本小题满分12分)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为,遇到红灯(禁止
12、通行)的概率为。假定汽车只在遇到红灯或到达目的地才停止前进,表示停车时已经通过的路口数,求:(1)的概率的分布列及期望E; (2 ) 停车时最多已通过3个路口的概率。7、(2004重庆文18)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。(1)三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率;(2)若甲单独向目标射击三次,求他恰好命中两次的概率.8、(2004浙江理18)(本题满分12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设
13、取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为.()求随机变量的分布列;()求随机变量的期望.9、(2004浙江文20)(本题满分12分)某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的).假定工厂之间的选择互不影响.()求5个工厂均选择星期日停电的概率;()求至少有两个工厂选择同一天停电的概率.10、(2004天津理18)(本小题满分12分) 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数.(1)求的分布列;(2)求的数学期望;(3)求“所选3人中女生人数”的概率.11、(2004天津文18)(本小题满
14、分12分) 从4名男生和2名女生中任选3人参加演讲比赛.(I) 求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.12、(2004湖南文理18)(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.()分别求甲、乙、丙三台机床各自加工零件是一等品的概率;()从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.13、(2004湖北21)(本小题满
15、分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)14、(2004湖北文21)(本小题满分12分)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和
16、所需费用如下表:预防措施甲乙丙丁P0.90.80.70.6费用(万元)90603010预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.15、(2004福建理18)(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.()求甲答对试题数的概率分布及数学期望;()求甲、乙两人至少有一人考试合格的概率.16、(2004福建文18)(本小题满分12分)甲、乙两人参加一次英语口语考试
17、,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.()分别求甲、乙两人考试合格的概率;()求甲、乙两人至少有一人考试合格的概率.17、(2003理20)(本小题满分12分)A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1,A2,A3,B队队员是B1,B2,B3,按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1对B1A2对B2A3对B3现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队、B队最后所得总分分别为、 (1)求、的概率分布;(2)求E,E
18、.18、(2003文,20)(本小题满分12分) 在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. ()求恰有一件不合格的概率; ()求至少有两件不合格的概率. (精确到0.001)19、(2002天津理,19)(本小题满分12分)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立)。(1)求至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3?概率与统计高考真题参考答案一、选择题 :1、D2、C3、D 4、D 5、B6、B7、C8、B9、D10、B11、B12、二、填空题10.1,0.6,0.3 2、80 3、4、0.75 5、4 6
19、、192 7、8、1,3 9、6310、6,30,10 11、三、解答题1本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(=0)=0.520.62=0.09. P(=1)= 0.520.62+ 0.520.40.6=0.3 P(=2)= 0.520.62+0.520.40.6+ 0.520.42=0.37. P(=3)= 0.520.40.6+0.520.42=0.2 P(=4)= 0.520.42=0.04于是得到随机变量的概率分布列为:01234P0.090.30.370.20.04所以E=00.09+10.3+20.37+30.
20、2+40.04=1.8.2、本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识解决实际问题的能力,满分12分.解:()随机选出的3位同学中,至少有一位男同学的概率为 1;6分()甲、乙被选中且能通过测验的概率为 ;12分3、本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用数学知识解决问题的能力,满分12分.()解法一:三支弱队在同一组的概率为 故有一组恰有两支弱队的概率为解法二:有一组恰有两支弱队的概率()解法一:A组中至少有两支弱队的概率 解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的
21、,所以A组中至少有两支弱队的概率为4、本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解决实际问题的能力.满分12分. 解:()的可能值为300,100,100,300.P(=300)=0.23=0.008, P(=100)=30.220.8=0.096,P(=100)=30.20.82=0.384, P(=300)=0.83=0.512,所以的概率分布为300100100300P0.0080.0960.3840.512根据的概率分布,可得的期望E=(300)0.08+(100)0.096+1000.384+3000.512=180.()这名同学总得分不为负分的概率为
22、P(0)=0.384+0.512=0.896.5、本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i个问题”为事件,则 P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.()这名同学得300分的概率 P1=P(A1A3)+P(A2A3) =P(A1)P()P(A3)+P()P(A2)P(A3) =0.80.30.6+0.20.70.6 =0.228.()这名同学至少得300分的概率 P2=P1+P(A1A2A3) =0.228+P(A1)P(A2)P(A3) =0.228+0.80.70
23、.6 =0.564.6、(本小题12分)解:(I)的所有可能值为0,1,2,3,4用AK表示“汽车通过第k个路口时不停(遇绿灯)”,则P(AK)=独立.故 从而有分布列: 0 1 2 3 4 P (II)答:停车时最多已通过3个路口的概率为.7、(本小题12分)解:(I)设AK表示“第k人命中目标”,k=1,2,3. 这里,A1,A2,A3独立,且P(A1)=0.7,P(A2)=0.6,P(A3)=0.5. 从而,至少有一人命中目标的概率为 恰有两人命中目标的概率为 答:至少有一人命中目标的概率为0.94,恰有两人命中目标的概率为0.44(II)设甲每次射击为一次试验,从而该问题构成三次重复独
24、立试验.又已知在每次试验中事件“命中目标”发生的概率为0.7,故所求概率为 答:他恰好命中两次的概率为0.441.8、(满分12分)解: ()由题意可得,随机变量的取值是2、3、4、6、7、10.随机变量的概率分布列如下2346710P0.090.240.160.180.240.09 随机变量的数学期望=20.09+30.24+40.16+60.18+70.24+100.09=5.2.9、解: ()设5个工厂均选择星期日停电的事件为A,则.()设5个工厂选择的停电时间各不相同的事件为B,则因为至少有两个工厂选择同一天停电的事件是, 所以 (12分)10、本小题考查离散型随机变量分布列和数学期望
25、等概念,考查运用概率知识解决实际问题的能力.满分12分. (1)解:可能取的值为0,1,2。 。所以,的分布列为012P(2)解:由(1),的数学期望为(3)解:由(1),“所选3人中女生人数”的概率为11、本小题考查等可能事件的概率计算及分析和解决实际问题的能力.满分12分.(I)解: 所选3人都是男生的概率为 (II)解:所选3人中恰有1名女生的概率为 (III)解:所选3人中至少有1名女生的概率为 12、解:()设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有 由、得 代入得 27P(C)251P(C)+22=0.解得 (舍去).将 分别代入 、 可得 即甲
26、、乙、丙三台机床各加工的零件是一等品的概率分别是()记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为13、本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分.解:不采取预防措施时,总费用即损失期望为4000.3=120(万元);若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为10.9=0.1,损失期望值为4000.1=40(万元),所以总费用为45+40=85(万元)若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为10.85=0.15,损失
27、期望值为4000.15=60(万元),所以总费用为30+60=90(万元);若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(10.9)(10.85)=0.015,损失期望值为4000.015=6(万元),所以总费用为75+6=81(万元).综合、,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.14、本小题考查概率的基础知识以及运用概率知识解决 实际问题的能力,满分12分.解:方案1:单独采用一种预防措施的费用均不超过120万元.由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.方案2:联合采用两种预防措施,
28、费用不超过120万元,由表可知.联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1(10.9)(10.7)=0.97.方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1(10.8)(10.7)(10.6)=10.024=0.976.综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.15、本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.解:()依题意,甲答对试题数的概率分布如下:0123P甲答对试题数的数学期望E=0+1+
29、2+3=.()设甲、乙两人考试合格的事件分别为A、B,则P(A)=,P(B)=.因为事件A、B相互独立,方法一:甲、乙两人考试均不合格的概率为P()=P()P()=1)(1)=.甲、乙两人至少有一人考试合格的概率为P=1P()=1=.答:甲、乙两人至少有一人考试合格的概率为.方法二:甲、乙两人至少有一个考试合格的概率为P=P(A)+P(B)+P(AB)=P(A)P()+P()P(B)+P(A)P(B)=+=.答:甲、乙两人至少有一人考试合格的概率为.16、本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.解:()设甲、乙两人考试合格的事件分别为A、B,则P(A)=, P
30、(B)=.答:甲、乙两人考试合格的概率分别为()解法一、因为事件A、B相互独立,所以甲、乙两人考试均不合格的概率为P()=P()P()=(1)(1)=.甲、乙两人至少有一人考试合格的概率为P=1P()=1=.答:甲、乙两人至少有一人考试合格的概率为.解法二:因为事件A、B相互独立,所以甲、乙两人至少有一人考试合格的概率为P=P(A)+P(B)+P(AB)=P(A)P()+P()P(B)+P(A)P(B)=+=.答:甲、乙两人至少有一人考试合格的概率为.17、本小题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力(满分12分).解:(1)、的可能取值分别为3,2,1,
31、0.,根据题意知+=3,所以 P(=0)=P(=3)=, P(=1)=P(=2)= P(=2)=P(=1)= , P(=3)=P(=0)= . (2); 因为+=3,所以 18、本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分.解:设三种产品各抽取一件,抽到合格产品的事件分别为A、B和C. ()P(A)=0.90,P(B)=P(C)=0.95. P=0.10 , P=P=0.05.因为事件A,B,C相互独立,恰有一件不合格的概率为 P(AB)+P(AC)+P(BC) =P(A)P(B)P()+P(A)P()P(C)+P()P(B)P(C) =20.900.950.0
32、5+0.100.950.95 =0.176答:恰有一件不合格的概率为0.176. ()解法一:至少有两件不合格的概率为 P(A)+P(B)+P(C)+ P() =0.900.052+20.100.050.95+0.100.052 =0.012. 答:至少有两件不合格的概率为0.012.解法二:三件产品都合格的概率为P(ABC)=P(A)P(B)P(C)=0.900.952=0.812.由()知,恰有一件不合格的概率为0.176,所以至少有两件不合格的概率为1P(ABC)+0.176=1(0.812+0.176)=0.012答:至少有两件不合格的概率为0.012.19、本小题考查相互独立事件同时发生或互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力。满分12分。解:(1)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即(2)至少4人同时上网的概率为至少5人同时上网的概率为因此,至少5人同时上网的概率小于0.3.15