ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:202KB ,
资源ID:427313      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-427313-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012年重点中学数学教案:第10课时 平面向量的数量积及运算律(2)(湘教版必修2).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012年重点中学数学教案:第10课时 平面向量的数量积及运算律(2)(湘教版必修2).doc

1、课 题:平面向量的数量积及运算律(2)教学目的:1掌握平面向量数量积运算规律;2能利用数量积的5个重要性质及数量积运算规律解决有关问题;3掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题 教学重点:平面向量数量积及运算规律教学难点:平面向量数量积的应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质教学过程:一、复习引入:1两个非零向量夹角的概念已知非零向量与,作,则()叫与的夹角C2平面向量数量积(内积)的定义:已知两

2、个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作ab,即有ab = |a|b|cosq,()并规定0与任何向量的数量积为0 3“投影”的概念:作图 定义:|b|cosq叫做向量b在a方向上的投影投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0时投影为 |b|;当q = 180时投影为 -|b|4向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cosq的乘积5两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量1ea = ae =|a|cosq;2ab ab = 03当a与

3、b同向时,ab = |a|b|;当a与b反向时,ab = -|a|b| 特别的aa = |a|2或4cosq = ;5|ab| |a|b|7判断下列各题正确与否:1若a = 0,则对任一向量b,有ab = 0 ( )2若a 0,则对任一非零向量b,有ab 0 ( )3若a 0,ab = 0,则b = 0 ( )4若ab = 0,则a 、b至少有一个为零 ( )5若a 0,ab = ac,则b = c ( )6若ab = ac,则b = c当且仅当a 0时成立 ( )7对任意向量a、b、c,有(ab)c a(bc) ( )8对任意向量a,有a2 = |a|2 ( )二、讲解新课:平面向量数量积的

4、运算律1交换律:a b = b a证:设a,b夹角为q,则a b = |a|b|cosq,b a = |b|a|cosq a b = b a2数乘结合律:(a)b =(ab) = a(b)证:若 0,(a)b =|a|b|cosq, (ab) =|a|b|cosq,a(b) =|a|b|cosq,若 0,(a)b =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq,(ab) =|a|b|cosq,a(b) =|a|b|cos(p-q) = -|a|b|(-cosq) =|a|b|cosq3分配律:(a + b)c = ac + bc 在平面内取一点O,作= a,

5、 = b,= c, a + b (即)在c方向上的投影等于a、b在c方向上的投影和, 即 |a + b| cosq = |a| cosq1 + |b| cosq2 | c | |a + b| cosq =|c| |a| cosq1 + |c| |b| cosq2 c(a + b) = ca + cb 即:(a + b)c = ac + bc说明:(1)一般地,()()(2),0(3)有如下常用性质:,()()()三、讲解范例:例1 已知a、b都是非零向量,且a + 3b与7a - 5b垂直,a - 4b与7a - 2b垂直,求a与b的夹角解:由(a + 3b)(7a - 5b) = 0 7a2

6、 + 16ab -15b2 = 0 (a - 4b)(7a - 2b) = 0 7a2 - 30ab + 8b2 = 0 两式相减:2ab = b2代入或得:a2 = b2设a、b的夹角为q,则cosq = q = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和解:如图:ABCD中,=|2=而= |2=|2 + |2 = 2= 例3 四边形ABCD中,且,试问四边形ABCD是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量解:四边形ABCD是矩形,这是因为:一方面:0,(),()()即由于,同理有由可得,且即四边形ABCD两组对边分别相等四边

7、形ABCD是平行四边形另一方面,由,有(),而由平行四边形ABCD可得,代入上式得(2)即,也即ABBC综上所述,四边形ABCD是矩形评述:(1)在四边形中,是顺次首尾相接向量,则其和向量是零向量,即0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系四、课堂练习:1下列叙述不正确的是( )A向量的数量积满足交换律 B向量的数量积满足分配律C向量的数量积满足结合律 Dab是一个实数2已知|a|=6,|b|=4,a与b的夹角为,则(a+2b)(a-3b)等于( )A72 B-72 C36 D-363|a|=3,|b|=4,向量a+b与a

8、-b的位置关系为( )A平行 B垂直 C夹角为 D不平行也不垂直4已知|a|=3,|b|=4,且a与b的夹角为150,则(a+b) 5已知|a|=2,|b|=5,ab=-3,则|a+b|=_,|a-b|= 6设|a|=3,|b|=5,且a+b与ab垂直,则 参考答案:1C 2B 3B 4 +2 5 6五、小结 通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质解决相关问题六、课后作业1已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )A60 B30 C135 D2已知|a|=2,|b|=1,a与b之间的夹角为,那

9、么向量m=a-4b的模为( )A2 B2 C6 D123已知a、b是非零向量,则|a|=|b|是(a+b)与(a-b)垂直的( )A充分但不必要条件 B必要但不充分条件C充要条件 D既不充分也不必要条件4已知向量a、b的夹角为,|a|=2,|b|=1,则|a+b|a-b|= 5已知a+b=2i-8j,a-b=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么ab= 6已知ab、c与a、b的夹角均为60,且|a|=1,|b|=2,|c|=3,则(a+2b-c)_7已知|a|=1,|b|=,(1)若ab,求ab;(2)若a、b的夹角为,求|a+b|;(3)若a-b与a垂直,

10、求a与b的夹角8设m、n是两个单位向量,其夹角为,求向量a=2m+n与b=2n-3m的夹角9对于两个非零向量a、b,求使|a+tb|最小时的t值,并求此时b与a+tb的夹角参考答案:1D 2B 3C 4 5 63 6 117 (1)- (2) (3)45 8 120 9 90七、板书设计(略)八、课后记及备用资料:1常用数量积运算公式在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛即(ab)aabb,(ab)aabb上述两公式以及(ab)(ab)ab这一类似于实数平方差的公式在解题过程中可以直接应用2应用举例例1已知a,b,ab,求ab,ab解:ab(ab)aabb()ab,(ab)(ab)a2abb22(3)35,ab例2已知a8,b10,ab16,求a与b的夹角(精确到)解:(ab)(ab)a2abba2abb,高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3