ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:446KB ,
资源ID:4268      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-4268-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((新人教A)高三数学教案全集之4 5正弦、余弦的诱导公式(二).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(新人教A)高三数学教案全集之4 5正弦、余弦的诱导公式(二).doc

1、高考资源网() 您身边的高考专家课 题:45正弦、余弦的诱导公式(二)教学目的:能熟练掌握诱导公式一至五,并运用求任意角的三角函数值,并能应用,进行简单的三角函数式的化简及论证教学重点:诱导公式教学难点:诱导公式的灵活应用授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学过程:一、复习引入:诱导公式一(其中): 用弧度制可写成 公式二: 用弧度制可表示如下: 公式三: 公式四: 用弧度制可表示如下: 公式五: 用弧度制可表示如下: 二、讲解范例:例1求下列三角函数的值(1) sin240;(2);(3) cos(-252);(4) sin(-)解:(1)sin240=sin(180

2、+60)sin60=(2) =cos=;(3) cos(-252)=cos252= cos(180+72)=cos72=03090;(4) sin(-)=sin=sin=sin=说明:本题是诱导公式二、三的直接应用通过本题的求解,使学生在利用公式二、三求三角函数的值方面得到基本的、初步的训练本例中的(3)可使用计算器或查三角函数表例2求下列三角函数的值(1)sin(-11945);(2)cos;(3)cos(-150);(4)sin解:(1)sin(11945)=sin11945=sin(180-6015)= sin6015=08682(2)cos=cos()=cos=(3)cos(-150)

3、=cos150=cos(180-30) =cos30=;(4)sin=sin()=sin=说明:本题是公式四、五的直接应用,通过本题的求解,使学生在利用公式四、五求三角函数的值方面得到基本的、初步的训练本题中的(1)可使用计算器或查三角函数表例3求值:sincossin略解:原式=-sin-cos-sin =-sin-cos+sin =sin+cos+sin =+03090=13090 说明:本题考查了诱导公式一、二、三的应用,弧度制与角度制的换算,是一道比例1略难的小综合题利用公式求解时,应注意符号例4求值:sin(-1200)cos1290+cos(-1020)sin(-1050)+tan

4、855解:原式sin(120+3360)cos(210+3360)+cos(300+2360)-sin(330+2360)+tan(135+2360)sin120cos210cos300sin330+tan135sin(18060)cos(180+30) cos(36060)sin(360-30)+=sin60cos30+cos60sin30tan45=+-1=0说明:本题的求解涉及了诱导公式一、二、三、四、五以及同角三角函数的关系与前面各例比较,更具有综合性通过本题的求解训练,可使学生进一步熟练诱导公式在求值中的应用 例5化简:略解:原式=1说明:化简三角函数式是诱导公式的又一应用,应当熟悉

5、这种题型例6化简:解:原式= = = =说明:本题可视为例5的姐妹题,相比之下,难度略大于例5求解时应注意从所涉及的角中分离出2的整数倍才能利用诱导公式一例7求证:证明:左边= = = =,右边=,所以,原式成立例8求证证明:左边 tan3右边,所以,原式成立说明:例7和例8是诱导公式及同角三角函数的基本关系式在证明三角恒等式中的又一应用,具有一定的综合性尽管问题是以证明的形式出现的,但其本质是等号左、右两边三角式的化简例9已知求:的值解:已知条件即, 又,所以:=说明:本题是在约束条件下三角函数式的求值问题由于给出了角的范围,因此,的三角函数的符号是一定的,求解时既要注意诱导公式本身所涉及的

6、符号,又要注意根据的范围确定三角函数的符号例10已知,求:的值解:由,得,所以故 =1tan2tan2=1+说明:本题也是有约束条件的三角函数式的求值问题,但比例9要复杂一些它对于学生熟练诱导公式及同角三角函数关系式的应用提高运算能力等都能起到较好的作用例11已知的值解:因为,所以:=m由于所以于是:=,所以:tan(= 说明:通过观察,获得角与角之间的关系式=-(),为顺利利用诱导公式求cos()的值奠定了基础,这是求解本题的关键,我们应当善于引导学生观察,充分挖掘的隐含条件,努力为解决问题寻找突破口,本题求解中一个鲜明的特点是诱导公式中角的结构要由我们通过对已知式和欲求之式中角的观察分析后

7、自己构造出来,在思维和技能上显然都有较高的要求,给我们全新的感觉,它对于培养学生思维能力、创新意识,训练学生素质有着很好的作用例12已知cos,角的终边在y轴的非负半轴上,求cos的值解:因为角的终边在y轴的非负半轴上,所以:=,于是 2()=从而 所以 =说明:本题求解中,通过对角的终边在y轴的非负半轴上的分析而得的=,还不能马上将未知与已知沟通起来然而,当我们通过观察,分析角的结构特征,并将它表示为2()后,再将=代入,那么未知和已知之间随即架起了一座桥梁,它为利用诱导公式迅速求值扫清了障碍通过本题的求解训练,对于培养学生的观察分析能力以及思维的灵活性和创造性必将大有裨益三、课堂练习:1已

8、知sin(+) ,则的值是( )(A)(B) 2(C)(D)2式子的值是( )(A)(B)(C)(D)- 3,是一个三角形的三个内角,则下列各式中始终表示常数的是( )(A)sin(+)+sin(B)cos(+)- cos(C)sin(+)-cos(-)tan(D)cos(2+)+ cos24已知:集合,集合,则P与Q的关系是( )(A)PQ(B)PQ(C)P=Q(D)PQ=5已知对任意角均成立若f (sinx)=cos2x,则f(cosx)等于( )(A)-cos2x(B)cos2x(C) -sin2x(D)sin2x6已知,则的值等于 7= 8化简:所得的结果是 9求证10设f(x)=, 求f ()的值答案与提示1D 2B 3C 4C 5A 6 70 82cos9提示:左边利用诱导公式及平方关系,得,右边利用倒数关系和商数关系,得,所以左边=右边10提示:分n=2k,n=2k+1(kz)两种情况讨论,均求得f(x)=sin2x故f()=四、小结 应用诱导公式化简三角函数的一般步骤:1用“- a”公式化为正角的三角函数;2用“2kp + a”公式化为0,2p角的三角函数;3用“pa”或“2p - a”公式化为锐角的三角函数五、课后作业:六、板书设计(略)七、课后记:- 7 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3