ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:296KB ,
资源ID:420465      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-420465-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《精品教案推荐》高中数学必修2立体几何优质教案:13 直线与平面平行的性质.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《精品教案推荐》高中数学必修2立体几何优质教案:13 直线与平面平行的性质.doc

1、直线与平面平行的性质【教学目标】1.探究直线与平面平行的性质定理.2.体会直线与平面平行的性质定理的应用.3.通过线线平行与线面平行转化,培养学生的学习兴趣.【重点难点】教学重点:直线与平面平行的性质定理.教学难点:直线与平面平行的性质定理的应用.【课时安排】1课时【教学过程】复习 回忆直线与平面平行的判定定理:(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(2)符号语言为:(3)图形语言为:如图1.图1导入新课 观察长方体(图2),可以发现长方体ABCDABCD中,线段AB所在的直线与长方体ABCDABCD的侧面CDDC所在平面平行,你能在侧面CDD

2、C所在平面内作一条直线与AB平行吗?图2推进新课新知探究提出问题回忆空间两直线的位置关系.若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.用三种语言描述直线与平面平行的性质定理.试证明直线与平面平行的性质定理.应用线面平行的性质定理的关键是什么?总结应用线面平行性质定理的要诀.活动:问题引导学生回忆两直线的位置关系.问题借助模型锻炼学生的空间想象能力.问题引导学生进行语言转换.问题引导学生用排除法.问题引导学生找出应用的难点.问题鼓励学生总结,教师归纳.讨论结果:空间两条直线的位置关系:相交、平行、异面.若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反

3、证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面. 怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.直线与平面平行的性质定理用文字语言表示为: 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 这个定理用符号语言可表示为:这个定理用图形语言可表示为:如图3.图3已知a,a,=b.求证:ab.证明:应用线面平行的性质定理的关键是:过这条直线作一个平面.应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.应用示例例1 如图4所示的一块木料中,棱BC平行

4、于面AC.图4(1)要经过面AC内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面AC内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.解:(1)如图5,在平面AC内,过点P作直线EF,使EFBC,图5并分别交棱AB、CD于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面AC,平面BC与平面AC交于BC,所以BCBC.由(1)知,EFBC,所以EFBC.因此BE、CF显

5、然都与平面AC相交.变式训练 如图6,a,A是另一侧的点,B、C、Da,线段AB、AC、AD交于E、F、G点,若BD=4,CF=4,AF=5,求EG.图6解:Aa,A、a确定一个平面,设为.Ba,B.又A,AB.同理AC,AD.点A与直线a在的异侧,与相交.面ABD与面相交,交线为EG.BD,BD面BAD,面BAD=EG,BDEG.AEGABD.(相似三角形对应线段成比例)EG=.点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7已知直线a,b,平

6、面,且ab,a,a,b都在平面外.求证:b.证明:过a作平面,使它与平面相交,交线为c.a,a,=c,ac.ab,bc.c,b,b.变式训练 如图8,E、H分别是空间四边形ABCD的边AB、AD的中点,平面过EH分别交BC、CD于F、G.求证:EHFG.图8证明:连接EH.E、H分别是AB、AD的中点,EHBD.又BD面BCD,EH面BCD,EH面BCD.又EH、面BCD=FG,EHFG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.拓展提升 已知:a,b为异面直线,a,b,a,b,求证:.证明:如图9,在b上任取一点P,由点P和直线a确定的平面与平面交于直线c,则c与b

7、相交于点P.图9变式训练 已知AB、CD为异面线段,E、F分别为AC、BD中点,过E、F作平面AB.(1)求证:CD;(2)若AB=4,EF=,CD=2,求AB与CD所成角的大小.(1)证明:如图10,连接AD交于G,连接GF,图10AB,面ADB=GFABGF.又F为BD中点,G为AD中点.又AC、AD相交,确定的平面ACD=EG,E为AC中点,G为AD中点,EGCD.(2)解:由(1)证明可知:AB=4,GF=2,CD=2,EG=1,EF=.在EGF中,由勾股定理,得EGF=90,即AB与CD所成角的大小为90.课堂小结 知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行. 方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.作业 课本习题2.2 A组5、6.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3